

NOAA Technical Memorandum NMFS F/NWC-108

Data Report: 1984 Bottom Trawl Survey of the Eastern Bering Sea Continental Shelf

by Karen Halliday and Yuko Umeda

September 1986

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Marine Fisheries Service

DATA REPORT: 1984 BOTTOM TRAWL SURVEY OF THE EASTERN BERING SEA CONTINENTAL SHELF

by

Karen Halliday and Yuko Umeda

Resource Assessment and Conservation Engineering
Northwest and Alaska Fisheries Center
National Marine Fisheries Service
National Oceanic and Atmospheric Administration
7600 Sand Point Way N.E.
Seattle, Washington 98115

September 1986

This document is available to the public through:
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

ABSTRACT

The Resource Assessment and Conservation Engineering Division of the Northwest and Alaska Fisheries Center conducts annual summer bottom trawl surveys to monitor the demersal fish and crab stocks of the eastern Bering Sea continental shelf. In 1984, as in each year since 1979, a major portion of the eastern Bering Sea shelf between the 20 m and the 200 m isobaths and from the Alaska Peninsula north to approximately the latitude of St. Matthew Island was surveyed. Samples were obtained by trawling for 30 minutes at the center of each square of a 20 X 20 nautical mile grid covering the survey area. Two vessels, the NOAA research vessel Chapman and the chartered trawler Alaska participated in the survey. Identical 83/112 eastern stern trawls were used by each vessel.

Survey results presented in this report include an inventory of fish species taken, estimates of the abundances of major fish and invertebrate groups and economically important fish species, geographic distributions of major fish families and economically important fish species, rank order of abundance of fish species in the overall survey area and in each of seven subareas, size composition of principal species, and age composition of walleye pollock (Theragra chalcogramma).

Detailed catch and station data and computer listings of the analyses of abundance estimates and biological characteristics of the sampled populations are provided in appendices.

THIS PAGE INTENTIONALLY LEFT BLANK

CONTENTS

	Page
Introduction	1
Survey Methods	2 2 4 8 10
Station and Catch Data Environmental Conditions Relative Fishing Powers of the Participating Vessels Overall Abundance of Major Fish and Invertebrate Groups and Distribution of Fish Groups Relative Abundance of Individual Fish Species Abundance, Distribution and Size and Age Composition of Principal Fish Species	12 12 12 15 19 36
References	87
Appendix A. Station and Catch Data, 1984 Eastern Bering Sea Trawl Survey	89
Appendix B. Rank Order of Relative Abundance of Fish and Invertebrates	125
Appendix C. Abundance Estimates for Principal Fish Species	141
Appendix D. Population Estimates by Sex and Size Groups for Principal Fish Species	173
Appendix E. Age-length Key for Walleye Pollock	193
Appendix F. Estimated Age Composition for Walleye Pollock	201

G E N E R A L D I S C L A I M E R

This document may have problems that one or more of the following disclaimer statements refer to:

- This document has been reproduced from the best copy furnished by the sponsoring agency. It is being released in the interest of making available as much information as possible.
- This document may contain data which exceeds the sheet parameters. It was furnished in this condition by the sponsoring agency and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures which have been reproduced in black and white.
- Zero The document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

INTRODUCTION

The Resource Assessment and Conservation Engineering (RACE) Division of the Northwest and Alaska Fisheries Center (NWAFC) has conducted annual bottom trawl surveys to monitor the abundance, distributions, and population structures of eastern Bering Sea demersal fish and crab stocks since 1971. The information gathered is used to provide the North Pacific Fishery Management Council with annual fishery-independent estimates of abundance and biological condition of commercially exploited stocks, to provide distribution and abundance information to commercial fishermen, and to develop a time series data base contributing to our understanding of the population dynamics and interactions of groundfish species.

Early investigations of groundfish stocks in the eastern Bering Sea (1971-74) represented essentially an expansion of data collection during annual assessment surveys of red king crab (Paralithodes camtschatica) stocks in a limited area of the southeastern Bering Sea. The first large-scale NWAFC survey of the eastern Bering Sea shelf was conducted in 1975 under contract to the Bureau of Land management, in response to a need for baseline data to assess the potential impact of proposed offshore oil exploration and development on fishery resources (Pereya et al. 1976). During this baseline survey, sampling was conducted over the Bering Sea shelf between the 20 m and 200 m isobaths and from the Alaska Peninsula north to approximately 62° N lat. (Fig. 1). The survey region was stratified into seven subareas, with sampling density allocated on the basis of available information on the distribution patterns of economically important groundfish and invertebrates and on the locations of potential oil lease sites in Bristol Bay and the outer shelf region. Less extensive coverage of the shelf was obtained during annual surveys in succeeding years until 1979, when another comprehensive

survey of the Bering Sea shelf was undertaken in cooperation with the Japan Fisheries Agency (Bakkala and Wakabayashi 1985). The 1979 survey encompassed the entire region sampled in the 1975 baseline study, along with additional sampling in continental slope watersbetween the Aleutian Islands and the U.S.-U.S.S.R. convention line, and in the region between St. Matthew and St. Lawrence Islands (Fig. 2). A hydroacoustic survey was also conducted in 1979 to assess the midwater component of the walleye pollock (Theragra chalcogramma) population. Each annual bottom trawl survey since 1979 has essentially repeated the sample grid established during the 1975 baseline survey, with slight modifications each year. This region has been found to encompass the major part of the distributions of economically important Bering Sea groundfish species. Every third year (1979, 1982, 1985) an extended survey has been conducted, including hydroacoustic assessment of midwater pollock, bottom trawl sampling of the continental slope through the cooperation of the Japan Fisheries Agency, and bottom trawl sampling in the region between St. Matthew and St. Lawrence Islands.

This report describes the methods, used during the 1984 survey, in which only the baseline study area was sampled, and summarizes the information obtained for major groups of demersal fish and invertebrates and for individual species of economically important groundfish; data gathered on principal species of crabs are presented separately in a report by Otto et al. (1984).

SURVEY METHODS

Survey Area and Sampling Design

Sampling was conducted between 5 June and 27 August 1984. A systematic sample of the demersal fish and invertebrates of the shelf was obtained by trawling for 30 minutes at the center of each 20×20 nautical mile (nmi)

Figure 1. --Sampling stations and subareas of the 1975 baseline survey, with approximate locations of oil lease areas (from Pereya et al. 1976).

Figure 2. --Sampling stations and stratification of the 1979 expanded triennial survey (from Bakkala and Wakabayashi 1985).

grid block within the baseline survey area, resulting in a base sampling density of approximately one station per 400 nmi² (1,372 km²). A total of 355 standard survey stations were sampled in 1984, with two vessels fishing alternate north/south rows of the station grid, and proceeding from Bristol Bay westward to the shelf break (Fig. 3). This alternate-row fishing pattern is used to facilitate fishing power comparsons between the two vessels.

The survey region was divided into seven subareas for analysis and reporting of biomass and population statistics; These subareas essentially follow the stratification established in the 1975 baseline survey. Additionally, sampling intensity was doubled in the vicinities of the Pribilof and St. Matthew Islands in order to increase coverage of blue king crab (Paralithodes platypus) stocks in these areas. Calculations were performed separately for the low and high density sections of each subarea, giving a total of 15 geographical strata for analytical purposes. Due to the high-density sampling regions and the irregular boundaries of the survey area, sampling density varied among subareas, ranging from 1,142 km² per station in subarea 5 to 1,413 km² per station in subarea 3N (Table 1).

Vessels and Fishing Gear

The 1984 survey was conducted aboard the 38.7 m NOAA research vessel

Chapman and the 30.5 m trawler Alaska, chartered from the University of

Washington (Table 2). Identical 83/112 eastern stern trawls, equipped with

double 30 fathom dandylines and 24-inch footrope chain extensions to improve

the net's ability to tend bottom, were used by each vessel (Table 3). Net

mensuration studies conducted on this gear during the 1983 survey gave a mean

path width of 16.54 m on the Chapman, and 16.41 m on the Alaska. A mean

vertical opening of 2.3 m was observed for both vessels.

Figure 3.--Sampling stations included in the 1984 survey analysis. Solid lines indicate subarea boundaries; the two regions bounded by dashed lines were sampled at high density for increased coverage of blue king crab (Paralithodes platypus) stocks.

Table 1.--Size of subareas used during the 1984 bottom trawl survey and sampling densities by subarea (see also Fig. 1).

	Area	Proportion	Sampling	density
Subarea	(km ²)	of total area	No. Stns.	km ² /Stn.
				
1	78,717	0.169	57	1,381
2	60,882	0.131	44	1,384
3N	48,027	0.103	34	1,413
3S	80,941	0.174	67	1,208
4N	91,704	0.197	74	1,239
4 S	81,526	0.175	59	1,382
5	22,850	0.049	20	1,142
Total Survey Area	464,647 a	1.000	355	1,309

Table 2.--Vessels participating in the 1984 bottom trawl survey.

	Overall	Gross	Shaft	Survey	Period
Vessel	Length (m)	Tonnage	Horsepower	Start	Finish
					,
Chapman	38.7	427	1,250	5 June	27 August
Alaska	30.5	219	600	5 June	12 August

Table 3.--Characteristics and dimensions of the 83-112 eastern stern trawl used during the 1984 survey.

Characteristics	Dimensions
Mean path width	16.5 m (<u>Chapman</u>) 16.4 m (<u>Alaska</u>)
Vertical opening	2.3 m
Headrope length	25.3 m
Footrope length	34.1 m
Mesh size	
Wing and body	102 mm
Belly and codend	89 mm
Codend liner	38 mm
Accessory gear	
Door width	1.8 m
Door length	2.7 m
Dandyline length	54.9 m
Chain extension	61 cm

Collection and Processing of Samples

Sampling procedures used in RACE eastern Bering Sea assessment surveys are described in detail by Wakabayashi et al. (1985). A brief summary will be given here.

Catches of less than approximately 2,500 lbs. (1,150 kg) were entirely processed; larger catches were weighed with a dynamometer and a subsample to be processed was taken from one side of the net--left or right as the net appears while fishing -- in order to avoid any bias in the subsample that might result from vertical stratification of species within the codend (Hughes, 1976). Pacific halibut (Hippoglossus stenolepis) and crab species of the genera Paralithodes (red and blue king crabs), Chionocetes (Tanner crabs), and Erimacrus (hair crabs) were sampled at a rate of 100%, regardless of total catch size. The economically important fish and invertebrates in the catch (or subsample) were sorted to the species level in most cases. However, two Atheresthes species, A. stomias (arrowtooth flounder) and A. evermanni (Kamchatka flounder) were grouped as "arrowtooth flounder" due to the difficulty of differentiating these species in the field. Similarly, two species of Hippoglossoides, H. elassodon (flathead sole) and H. robustus (Bering flounder) were grouped as "flathead sole." Minor species of fish and invertebrates were sorted to the lowest taxonomic level practicable within time constraints of the survey. The catch of each species was entirely weighed and enumerated either by a complete count or by counting a weighed subsample. Weights and numbers of individuals from a subsampled catch were then expanded to the total catch.

Sex and size composition were determined for all commercially important species captured in significant numbers (100 or more fish) each haul (Table 4). For commercial species present. in large numbers, random subsamples of

Table 4.--Numbers of fish measured and age structures collected during the 1984 eastern Bering Sea groundfish survey.

Species	Number measured	Number of age structures collected
Walleye pollock	40,530	1,695
Yellowfin sole	38,385	820
Rock sole	22,261	462
Flathead sole	17,735	573
Alaska plaice	14,448	455
Pacific cod	13,733	689
Arrowtooth flounder	7,510	355
Pacific halibut	1,591	
Greenland turbot	536	263
Pacific herring	296	302
Northern rockfish	117	
Rex sole	96	
Sablefish	53	
Arctic cod	51	
Total	157,342	5,614

approximately 200 individuals (300 in the case of pollock) were sexed and measured (to the nearest centimeter) from the tip of the snout to the end of the mid-caudal fin rays.

Age-structure samples, stratified by sex and length, were collected in both the northwestern and southeastern divisions of the survey area (Table 4). Dorsal fin rays were taken from Pacific cod (Gadus macrocephalus) for age determination, and scale scrapes from Pacific herring (Clupea harengus pallasi); otoliths were used for age determination in all other species. Ten structures per sex/centimeter interval were collected from pollock and yellowfin sole (Pleuronectes aspera); five structures per sex/centimeter interval were taken from all other major species.

Temperature profiles of the water column were obtained at each station by means of an expendable bathythermograph (XBT) or conductivity-salinity-temperature-depth (CSTD) instrument cast.

Data Analysis

The procedures used in analysis of RACE Bering Sea survey data will be described briefly. For a detailed description, the reader is referred to Wakabayashi et al. (1985).

Relative fishing powers of the two vessels were determined for each species by comparing the catch per unit effort values (CPUE, in kilograms per hectare trawled) obtained by each vessel in sampling an equal number of stations over the same general region of the survey area. All hauls on the standard survey grid that could be matched with a corresponding haul by the other vessel in an adjacent row were used in fishing power analysis, with the stipulation that pairs of hauls in which the bottom temperature recorded by one or both vessels was less than or equal to 0°C were excluded due to differences expected in the distributions of groundfish across the zero-degree

isotherm: The need for a fishing power correction factor was assessed for each species by determining whether the distributions of CPUE values obtained by the two vessels were statistically equivalent, based on a method described by Geisser and Eddy (1979). In this procedure, a "discrepancy" statistic, D, is calculated for the CPUE values, first under the assumption that the CPUE distributions for the two vessels are indistinguishable (D_1) , and second under the assumption of distinct distributions (D_2) . If D_1 exceeded D_2 for a given species, the CPUE distributions obtained by the two vessels were considered statistically different. The vessel with the higher catch rate for that species was then assigned a fishing power of 1.0, and catch weights and numbers taken by the less efficient vessel were multiplied by a correction factor equal to the ratio of the CPUE value of the more efficient vessel to the CPUE value of the less efficient vessel.

Relative catch rates of each species, by subarea and for the overall survey area, were calculated as the mean CPUE in kilograms per hectare. Catch rates for each stratum were weighted by the stratum area and summed over strata to calculate the mean CPUE for each of the subareas and for the overall survey area. Standing stock (biomass) estimates were obtained for each stratum by multiplying the stratum mean CPUE by the stratum area. Stratum values were then summed to give biomass estimates for each subarea and for the total area. Population estimates were derived in an analogous manner, expanding mean number per hectare to obtain stratum estimates and summing stratum estimates to give subarea and total population estimates.

In estimating the length distributions of populations of principal species, relative length-frequency data obtained at each station were first expanded to give the number of fish (per hectare trawled) falling within each sex/centimeter interval at that station. These values were then summed over

all stations within the stratum for which length data was obtained, giving the estimated relative length frequency of the stratum population. These relative frequencies in turn were applied to the total stratum population estimate to obtain estimates of the numbers of fish in each size category in that stratum. Finally, stratum estimates were summed to give the estimated size composition of populations by subarea and for the overall survey area. Age composition was estimated by apportioning the computed population length distribution among ages according to age/length keys derived from the stratified samples of age-structures.

RESULTS

Station and Catch Data

The unadjusted catch weights (kg) of each species are listed by vessel, and haul number, along with the date, location, depth, duration, and distance of each tow, in Appendix A.

Environmental Conditions

Sea surface temperatures recorded during the 1984 survey ranged from 1.6°C to 10.1°C. Surface temperatures tended to increase from east to west across the shelf (Fig. 4), probably reflecting the warming of the surface water during the summer as the vessels proceeded from east to west during the survey. Bottom temperatures ranged from -1.8°C to 9.6°C. The warmest bottom temperatures (above 6°C) were observed in shallow waters near the Alaska coastline (Fig. 5). Bottom water over most of the shelf fell within a range of from 0°C to 4°C, although a cold bottom water mass less than 0°C was observed extending south and east from the vicinity of St. Matthew Island. Comparison of annual mean bottom temperatures observed in a region of the southeastern Bering Sea that has been sampled consistently since 1972 (Fig. 6)

Figure 4.--Distribution of surface water temperatures observed during the 1984 survey.

Figure 5.--Distribution of bottom water temperatures observed during the $1984\ \mathrm{survey}$.

indicates the variability of summer temperature conditions of near-bottom waters on the eastern Bering Sea shelf (Fig. 7). Mean bottom temperatures observed for this area during annual summer surveys have ranged from 1.2°C to 4.8°C; in 1984, a mean of 3.1°C was observed, a value at approximately the middle of this range.

Relative Fishing Powers of the Participating Vessels

In preliminary analysis of the 1984 data, unusually large differences in the estimated fishing powers of the two vessels were obtained for a number of groundfish species. The observed differences were believed to result from a tendency of these species to avoid the cold bottom water mass extending southeast from St. Matthew Island, rather than to reflect true differences in vessel fishing power. All pairs of tows in which one or both of the vessels encountered bottom temperatures of O°C or less were therefore excluded from final fishing power analysis for 1984. A total of 244 tows, 122 for each vessel, were used for statistical comparison of mean catch rates and in calculations of relative fishing power (Fig. 8).

Comparison of "discrepancy" statistics (Geisser and Eddy 1979) indicated that the Alaska was significantly more efficient at capturing yellowfin sole, rock sole (Pleuronectes bilineata), flathead sole (including Bering flounder), poachers (all species combined), and shrimps (all species combined) than was the Chapman. Fishing power correction coefficients were therefore applied to catches of these species by the Chapman in order to standardize them to the higher catch rates obtained by the Alaska (Table 5). The Chapman captured sablefish (Anaplopoma fimbria) at a much higher rate than did the Alaska; however, no correction factor was applied because sablefish were encountered in very few tows, and the sample size was considered insufficient for a valid comparison of fishing power.

Figure 6.--Portion of the Bering Sea survey area that has been sampled annually since 1972. Sampling stations falling within this area were used in calculation of mean summer bottom water temperatures (Fig. 7).

Figure 7.--Mean summer bottom water temperature in the southeastern Bering Sea 1972-84, based on Northwest and Alaska Fisheries Center annual survey data.

Figure 8. -- 1984 survey stations included in fishing power analysis.

Table 5.--Comparison of mean catch rates of major species and species groups taken by the <u>Chapman</u> and <u>Alaska</u> using the alternate row fishing method to measure relative fishing powers between vessels.^a

	Mean cate (kg/		Ratio of catch rate		
Species	Chapman	Alaska	Chapman/Alaska		
Walleye pollock	93.23	80.25	1.16		
Pacific cod	19.36	16.70	1.16		
Sablefish	0.35	0.01	29.61		
Pacific ocean perch	<0.01				
Pacific herring	0.18	0.25	0.71		
Yellowfin sole	73.70	93.68	0.79 ^b		
Rock sole	18.23	27.95	0.65 ^b		
Flathead sole ^C	5.39	7.27	0.74 ^b		
Alaska plaice	15.47	17.20	0.90		
Greenland turbot	0.09	0.07	1.26		
Arrowtooth flounder ^C	4.85	3.39	1.43		
Pacific halibut	2.36	2.37	0.99		
Other flounders	0.74	1.13	0.65		
Smelts	0.28	0.21	1.34		
Sculpins	4.44	4.37	1.02		
Snailfishes	0.01	<0.01	2.81		
Poachers	0.11	0.25	0.43 ^b		
Eelpouts	0.23	0.19	1.23		
Skates	3.85	4.84	0.80		
Other fish	0.04	0.04	1.06		
Shrimp (total)	0.01	0.02	0.31 ^b		

^aComparisons based on 122 stations sampled by each vessel in alternate rows.

^bAnalysis of Geisser and Eddy (1979) "discrepancy" statistics indicated that CPUE value. distributions for the two vessels were not statistically equivalent $(D_1>D_2)$. Fishing power correction factors were applied to standardize the <u>Chapman</u> catch rate to that of the Alaska.

^c"Flathead sole" includes Bering flounder; "Arrowtooth flounder" includes Kamchatka flounder.

Overall Abundance of Major Fish and Invertebrate Groups and Distribution of Fish Groups

A total of 82 species of fish, representing 20 families, were encountered during the 1984 survey (Table 6). The estimated abundances of major fish and invertebrate taxa are summarized by subarea in Tables 7 and 8. A biomass of 14.2 million metric tons (t) was estimated for the total survey area; fish species accounted for 84% (11.8 million t) of the total biomass and invertebrates made up 16% (2.3 million t). Fish species in two families--Gadidae (cods) and Pleuronectidae (flatfishes) -- constituted 96% of the total estimated Total gadid biomass was estimated at 5.6 million t, 4.6 million fish biomass. t of which consisted of pollock. Total pleuronectid biomass was estimated to be 5.7 million t, primarily yellowfin sole. Grab species accounted for 34% of the estimated invertebrate biomass, asteriod starfish for 27%, and snails for 18%. Distributions of total fish and major fish families (cods, flounders, sculpins, skates, eelpouts, smelts, poachers, and snailfish) are illustrated in Figures 9-17. The greatest concentrations of total demersal fish biomass (400-2000 kg/ha) were located in Bristol Bay, along the north side of the Alaska Peninsula, and in scattered dense patches along the outer shelf (>100 m depth) (Fig. 9). This distribution largely reflects the abundance patterns of cods, which were distributed primarily along the outer shelf and north of the Alaska Peninsula in concentrations of up to 2,000 kg/ha (Fig. 10) and of flatfish, which were abundant throughout the inner (<50 m depth) and middle shelf (50-100 m depth) regions with concentrations of 200-900 kg/ha found in. Bristol Bay and the middle shelf (Fig. 11).

Table 6.--List of fish species taken during the 1984 bottom trawl survey.

Family and species ^a	Common Name
Rajidae	
Unidentified Rajidae Bathyraja abyssicolab Bathyraja aleuticab Bathyraja interruptab Bathyraja parmiferab Raja binoculata Raja stellulata	Skate Deepsea skate Aleutian skate Bering skate Alaska skate Big skate Starry skate
Clupeidae	•
Clupea pallasiib	Pacific herring
Salmonidae	
Oncorhynchus keta	Chum salmon
Osmeridae	
Osmerus mordax Mallotus villosus Thaleichthys pacificus	Rainbow smelt Capelin Eulachon
Gadidae	
Boreogadus saida Eleginus gracilis Gadus macrocephalus Theragra chalcogramma	Arctic cod Saffron cod Pacific cod Walleye pollock
Zoarcidae	
Lycodes brevipes Lycodes palearis Lycodes raridens Lycodes turneri	Shortfin eelpout Wattled eelpout Marbled eelpout Polar eelpout

Table 6 .-- Continued.

Family and species

Common Name

Scorpaenidae

Sebastes sp.
Sebastes alutus
Sebastes polyspinis
Sebastes variegatus

Rockfish unidentified
Pacific ocean perch
Northern rockfish
Harlequin rockfish

Hexagrammidae

Unidentified Hexagrammidae

Hexagrammos decagrammus

Hexagrammos stelleri

Pleurogrammus monopterygius

Greenling
Kelp greenling
Whitespotted greenling
Atka mackerel

Anoplopomatidae

Anoplopoma fimbria

Unidentified Cottidae

Sablefish

Cottidae

Dasycottus setiger Gymnocanthus sp. Gymnocanthus galeatus Gymnocanthus pistilligerd Gymnocanthus tricuspis Hemilepidotus jordani Hemitripterus bolini Icelus sp. Icelus spatula Icelus spiniger Leptocottus armatus Malacocottus kincaidi Melletes papilio Myoxocephalus sp. Myoxocephalus jaok Myoxocephalus polyacanthocephalus Myoxocephalus verrucosus^d Triglops sp. Triglops forficata Triglops pingeli Triglops scepticus

Sculpin Spinyhead sculpin Sculpin unidentified Armorhead sculpin Threaded sculpin Arctic staghorn sculpin Yellow Irish lord Bigmouth sculpin Sculpin unidentified Spatulate sculpin Thorny sculpin Pacific staghorn sculpin Blackfin sculpin Butterfly sculpin Sculpin unidentified Plain sculpin Great sculpin Warty sculpin Sculpin unidentified Scissortail sculpin Ribbed sculpin Spectacled sculpin

Table 6. --Continued.

Family and species

Common Name

Agonidae

Unidentified Agonidae
Acipenserinus
Anoplagonus inermis
Aspidophoroides bartoni
Bathyagonus alascanus
Bathyagonus infraspinatus
Occella dodecaedron
Occella verrucosa
Pallasina barbata
Sarritor frenatus

Poacher
Sturgeon poacher
Smooth alligatorfish
Aleutian alligatorfish
Gray starsnout
Spinycheek starsnout
Bering poacher
Warty poacher
Tubenose poacher
Sawback poacher

Cyclopteridae

Unidentified Cyclopteridae
Aptocyclus ventricosus
Careproctus rastrinus^d
Careproctus scottae^C
Eumicrotremus orbis
Liparis sp.
Liparis dennyi
Liparis gibbus^b

Snailfish
Smooth lumpsucker
Salmon snailfish
Scott's snailfish
Pacific spiny lumpsucker
Snailfish unidentified
Marbled snailfish
Dusky snailfish

Trichodontidae

Trichodon trichodon

Pacific sandfish

Bathymasteridae

Bathymaster signatus

Searcher

Anarhichadidae

Anarhichas orientalis
Anarrhichthys ocellatus

Bering wolffish Wolf-eel

Stichaeidae

Lumpenus maculatus^b
Lumpenus sagitta
Stichaeus punctatus

Daubed shanny Snake prickleback Arctic shanny

Table 6.--Continued.

Family and Species	Common Name
Zaproridae	
Zaprora silenus	Prowfish
Ammodytidae	
Ammodytes hexapterus	Pacific sand lance
Bothidae	
Citharicthys sordidus	Pacific sanddab
Pleuronectidae	
Atheresthes evermanni	Kamchatka flounder
Atheresthes stomias	Arrowtooth flounder
Errex zachirus ^e	Rex sole
Hippoglossoides robustus	Bering flounder
Hippoglossoides elassodon	Flathead sole
Hippoglossus stenolepis	Pacific halibut
Platichthys stellatus	Starry flounder
Pleuronectes aspera ^e	Yellowfin sole
Pleuronectes bilineatae	Rock sole
Pleuronectes isolepise	Butter sole
Pleuronectes proboscidea ^e	Longhead dab
Pleuronectes quadrituberculatus	Alaska plaice
Pleuronectes sakhalinensis ^e	Sakhalin sole
Reinhardtius hippoglossoides ^C	Greenland turbot

^aNomenclature from Robins (1980) unless otherwise noted.

^bNomenclature from Eschmeyer, Herald and Hamman (1983).

^CNomenclature from Kessler (1985).

 $^{^{\}rm d} Nomenclature from Quast and Hall (1972).$

^eNomenclature from Sakamoto (1984).

Table 7.--Summary of apparent biomasses of major fish species and fish groups taken during the 1984 bottom trawl survey.

	Estimated b									
_	(with 95% c		Proport			Estimated	biomass by	subarea (t	:)	
Taxon	interval) f		of tota		2	3N	3s	4N	48	5
		<u> </u>								_
Gadidae (cods)										
Walleye pollock	4,585,324 <u>+</u>	904,300	0.324		1,154,448	836,205	1,292,998	79,070	201,382	7,608
Pacific cod	999,588 <u>+</u>	126,795	0.071	224,503	79,578	187,107	265,921	127,012	109,514	5,954
Other cods	2,200 +	1,575	<0.001	0	0	0	0	1,519	440	241
Total cods	5,587,112 <u>+</u>	940,890	0.394	1,238,116	1,234,025	1,023,312	1,558,918	207,601	311,336	13,802
Pleuronectidae (flat	fishes)									
Yellowfin sole	3,365,281 +	393,932	0.238	1,045,447	97,972	144	88,087	924,944	1,198,763	9,924
Rock sole	967,279 +	171,496	0.068	583,894	65,530	1,837	104,125	51,512	159,967	414
Flathead sole	340,865 +	59,962	0.024	61,816	120,398	55,333	65,338	11,754	21,632	4,595
Alaska plaice	726,846 +	195,201	0.051	72,394	18,466	445	53,465	384,804	163,199	34,073
Arrowtooth flound	er 182,877 +	44,276	0.013	1,798	110,398	18,249	50,528	22	1,882	0
Greenland turbot	17,901 -	4,717	0.001	0	892	13,126	3,645	160	12	66
Pacific halibut	90,006 +	20,804	0.006	31,917	20,741	3,465	21,642	4,912	7,245	84
Other flatfish	52,122 +	13,710	0.004	20,134	10,817	25	3,190	5,887	11,940	129
Total flatfish	5,743,178 <u>+</u>	530,046	0.405	1,817,399	445,214	92,623	390,022	1,383,995	1,564,640	49,286
Anoplopomatidae (sablefish)	9,226 <u>+</u>	6,892	0.001	16	5,900	0	3,310	0	0	0
Clupeidae (Pacific herring)	15,795 <u>+</u>	12,457	0.001	10,422	600	87	600	2,208	908	971
Cottidae (sculpins)	236,991 <u>+</u>	56,525	0.017	14,376	24,773	4,756	. 46,976	58,172	24,565	63,373
Zoarcidae (eelpouts)	30,880 <u>+</u>	11,298	0.002	573	2,189	4,003	8,379	12,682	439	2,616
Osmeridae (smelts)	9,960 <u>+</u>	5,255	0.001	328	7,252	0	9	1,054	868	450
Agonidae (poachers)	9,287 <u>+</u>	2,270	0.001	2,563	673	19	867	3,888	1,272	4
Scorpaenidae (rockfi	sh)				•		•			
Pacific ocean per	ch 4 +	9	<0.001	0	4	0	0	0	0	. 0
Other rockfish	3,035 +	6,077	<0.001	0	3,016	0	18	0	0	0
Total rockfish	3,039 +	6,086	<0.001	0	3,021		.18		0	, 0
Cyclopteridae (snail	fish) 712 <u>+</u>	400	<0.001	4	7	104	149	145	53	250
Rajidae (skates)	187,721 <u>+</u>	29,369	0.013	16,069	65,456	20,119	59,617	10,004	14,859	1,598
Other fish	9,584 +	6,110	0.001	288	5,560	171	2,613	705	224	24
Total fish	11,843,485 <u>+</u>	1,043,326	0.836	3,100,153	1,794,674	1, 145, 195	2,071,478	1,680,453	1,919,161	132,374

^aRounding accounts for minor discrepancies between sums of subareas and total survey area, and between sums of taxonomic

subgroups and major groups.

b Proportion of total estimated biomass, fish and invertebrates combined, for the total survey area. Total estimated biomass = 14,167,101 t.

Table 8.--Summary of apparent biomasses of major invertebrate taxonomic groups taken during the 1984 bottom trawl survey.

	Estimated (with 95%			Proportion	•		Fetimat	ed biomage	by subare	n (+)	
Taxon	interval) survey are	for	total	of total biomass	1	2	. 3N	3s	dy subare	45	5
Porifera (sponges)	28,276	<u>+</u>	14,760	0.002	21,348	2,335	8	1,013	369	628	2,575
Coelenterata (coelenterates)	108,955	<u>+</u>	42,589	0.008	18,898	40,431	1,109	25,400	7,625	14,671	819
Mollusca											
Gastropoda (snails	408,889	+	67,970	0.029	27,435	33,468	19,189	88,311	109,585	123,511	7,390
Pelecypoda (bivalve	es) 3,677	-	1,185	<0.001	439	297	62	192	1,724	864	98
Squids	105	-	67		0	. 20	59	26	. 0	. 0	0
Octopuses	2,630	Ŧ	2,068		. 0	1,164	807	387	150	0	121
Other mollusks	72	Ŧ	15	<0.001	0	6	36	0	0	0	5
Total mollusks	415,373	<u>+</u> +	68,475	0.029	27,874	34,956	20,153	88,917	111,459	124,375	7,615
Crustacea											
Chionocetes sp. (Tanner crab)	322,774	<u>+</u>	94,604	0.023	17,499	25,189	24,380	85,966	76,798	49,817	43,125
Paralithodes sp. (king crab)	156,790	<u>+</u>	175, 144	0.011	140,819	283	1,377	5,619	1,851	5,306	1,536
Erimacrus isenbe		<u>+</u>	1,252	<0.001	655	512	0	1,188	656	725	4
Paguridae (hermit crab)	286,980	<u>+</u>	72,467	0.020	21,750	24,042	4,959	29,428	77,852	121,955	6,994
Other crab	18,777	+	9,501	0.022	2,937	539	509	441	3,759	6,259	4,333
Total crab	789,063	<u>+</u> +	194,064	0.056	183,660	50,565	31,225	122,642	160,915	184,063	55,993
Shrimps	4,147	<u>+</u>	1,566	<0.001	117	119	2,983	380	167	226	155
Other crustaceans	513	<u>+</u>	410	<0.001	78	196	0	27	0	108	105
Total crustaceans	793,723		194,057	0.056	183,856	50,879	34,208	123,049	161,082	184,396	56,253
Echinodermata									470 580		
Asteroidea (starfish)	626,023	±	1.24,372	0.044	199,362	13,958	44,640	44,473	172,573	142,845	8,172
Ophiuroidea (brittlestars)	137,953	±	71,614	0.010	2,732	43,617	22, 195	41,799	14,554	12,448	609
Echinoidea (sea urchins)	10,258	<u>+</u>	7,664	0.001	2,961	5,379	557	1,060	14	84	202
Holothuroidea (sea cucumbers)	11,425	<u>+</u>	9,531	0.001	8,584	2,536	. 0	0	0	22	284
Total echinoderms	785,660	±	142,412	0.055	213,640	65,489	67,393	87,332	187,141	155,400	9,266
Ascidiacea	182,113	±	82,603	0.013	34,008	1,471	0	3,259	87,123	48,291	7,960
Other invertebrates	9,579	<u>+</u>	11,902	0.001	163	47	6,670	986	302	1,210	201
Total invertebrates	2,323,679	<u>+</u> '	288,666	0.164	499,786	195,609	129,541	329,955	555,101	528,971	84,688

^aRounding accounts for minor discrepancies between sums of subareas and total survey area, and between sum of taxonomic subgroups and major groups.

 $^{^{}b}$ Proportion of total estimated biomass, fish and invertebrates combined, for the total survey area. Total estimated biomass = 14,167,101 t.

Figure 9.--Distribution and relative abundance in kg/ha of total fish during the 1984 survey.

Figure 10. --Distribution and relative abundance in kg/ha of total cods during the 1984 survey.

Figure 11.--Distribution and relative abundance in kg/ha of total flatfish during the 1984 survey.

Sculpins, with an estimated biomass of 237,000 t, were taken in low numbers throughout the survey area and in concentrations of 15-180 kg/ha in the vicinities of the Pribilof and St. Matthew Islands (Fig. 12). Skates had an estimated biomass of approximately 188,000 t and were most abundant in the outer shelf area where they were found in quantities of up to 60 kg/ha (Fig. 13).

Of the less abundant fish families, eelpouts (approximately 31,000 t total biomass) were seldom captured at depths less than 50 m and were most abundant (up to 30 kg/ha) in the north portion of the middle shelf (Fig. 14). Clupeids, represented in trawl samples only by Pacific herring, were taken largely in the Bristol Bay area. (The trawl survey biomass estimate of 15,700 t for this species cannot be considered representative since these fish are primarily distributed in midwater.) Smelts (approximately 10,000 t estimated biomass) were taken in small quantities throughout the inner shelf and in portions of the middle shelf, with one area of high concentration located in the outer shelf just north of Unimak Pass (Fig. 15). Poachers (9,000 t total estimated biomass) were taken consistently over most of the survey area, but never in amounts exceeding 4 kg/ha (Fig. 16). Sablefish, the only representatives of the family Anoplopomatidae in the survey area, were encountered primarily on the outer shelf, with an estimated biomass of 9,000 t. Snailfishes (total estimated biomass of 700 t) were taken infrequently, in scattered tows, at a maximum rate of 1.4 kg/ha (Fig. 17).

Sakhalin sole (<u>Pleuronectes sakhalinensis</u>) were found at several stations in the northern part of the survey area in 1984. This species has not previously been reported in RACE surveys of the eastern Bering Sea. However, specimens may have been encountered in this area in earlier years but misidentified as butter sole (<u>Pleuronectes isolepis</u>), a species very similar in appearance but occurring only as far north as the southeastern Bering Sea.

Figure 12. --Distribution and relative abundance in kg/ha of total sculpins during the 1984 survey.

Figure 13. --Distribution and relative abundance in kg/ha of total skates during the 1984 survey.

Figure 14.--Distribution and relative abundance in kg/ha of total eelpouts during the 1984 survey.

Figure 15.--Distribution and relative abundance in kg/ha of total smelts during the 1984 survey.

Figure 16.--Distribution and relative abundance in kg/ha of total poachers during the 1984 survey.

Figure 17. --Distribution and relative abundance in kg/ha of total snailfish during the 1984 survey.

Relative Abundance of Individual Fish Species

Mean catch rates (CPUE in kg/ha) of the 20 fish species taken in greatest abundance over the survey area as a whole are listed, in order of relative abundance, in Table 9. These 20 species accounted for 83% of the total CPUE (fish and invertebrate) in the survey area. Walleye pollock and yellowfin sole, with overall mean catch rates of 98.7 kg/ha and 72.4 kg/ha, respectively, together made up 56% of total CPUE.

As in previous years (Sample et al. 1985, Bakkala et al. 1985, Hirschberger 1985), by far the highest total catch rate (457.4 kg/ha) was observed in subarea 1--Bristol Bay and the shelf north of the Alaska Peninsula. Catches in this region were dominated by yellowfin sole and walleye pollock, taken in nearly equal quantities (132.8 and 128.8 kg/ha) (Table 10). These two species, together with rock sole, captured at a rate of 74.2 kg/ha, and Pacific cod, taken at 28.5 kg/ha, made up 80% of the total catch in this region. The catch rate observed for yellowfin sole in subarea 1 in 1984 was approximately 28% lower than that seen in 1983 (Hirschberger 1985). Catch rates for all other major species in this area were very similar to those obtained in 1983.

Walleye pollock dominated catches in the outer shelf regions (subareas 2, 3S, and 3N), accounting for 54-66% of the total mean CPUE values (Tables 11-13). Catch rates for pollock in 1984 were very similar in all three subareas, ranging from 159.8-189.7 kg/ha, although much higher rates had been observed in the southern regions of the outer shelf than in the northern area during the 1983 survey (Hirschberger 1985). Pacific cod ranked second to pollock in abundance in the northern portions of the outer shelf (subareas 3S and 3N) with catch rates of 32.9 and 39.0 kg/ha. Several species of flounder-flathead sole, arrowtooth flounder, and yellowfin sole--outranked Pacific cod in the southern outer shelf (subarea 2), declining inabundance to the

Rank	Species	Mean CPUE (kg/ha) ^a	Proportion of total CPUE ^b	Cumulative proportion	
1 .	Walleye pollock	98.70	0.324	0.324	
2	Yellowfin sole	72.44	0.238	0.562	
3	Pacific cod	21.52	0.071	0.633	
4	Rock sole	20.82	0.068	0.701	
5	Alaska plaice	15.64	0.051	0.752	
6	Flathead sole	7.34	0.024	0.776	
7	Arrowtooth flounder	3.94	0.013	0.789	
8	Pacific halibut	1.94 0.006		0.795	
9	Skate unidentified	1.92	0.006	0.801	
0	Alaska skate	1.88	0.006	0.807	
1	Plain sculpin	1.04	0.003	0.810	
2	Warty sculpin	1.01	0.003	0.813	
3	Butterfly sculpin	0.83	0.003	0.816	
4	Longhead dab	0.61	0.002	0.818	
5	Yellow Irish lord	0.60	0.002	0.820	
6	Bigmouth sculpin	0.55	0.002	0.822	
7	Sparse toothed lycod	0.46	0.002	0.824	
В	Great sculpin	0.39	0.001	0.825	
9	Greenland turbot	0.39	0.001	0.826	
o .	Myoxocephalus sp.	0.38	0.001	0.827	

 $^{^{\}mathrm{a}}$ 90% confidence intervals for estimates of mean CPUE are given in Appendix B.

 $^{^{\}mathrm{b}}\mathrm{Total}$ CPUE (all fish and invertebrates) = 304.94 kg/ha.

Table 10. --Rank order of abundance of the 20 most abundant species of fish taken during the 1984 bottom trawl survey, Subarea I. (Total effort = 264.2 hectares (ha) trawled.)

Rank	Species	Mean CPUE (kg/ha)	Proportion of total CPUE ^a	Cumulative proportion
1	Yellowfin sole	132.83	0.290	0.290
2	Walleye pollock	128.78	0.282	0.572
3	Rock sole	74.19	0.162	0.734
4	Pacific cod	28.52	0.062	0.796
5	Alaska plaice	9.20	0.020	0.816
6	Flathead sole	7.85	0.017	0.833
7 .	Pacific halibut	4.06	0.009	0.842
8	Longhead dab	1.44	0.003	0.845
9	Pacific herring	1.32	0.003	0.848
0	Skate unidentified	1.28	0.003	0.851
1	Plain sculpin	1.03	0.002	0.853
2	Starry flounder	0.94	0.002	0.855
3	Alaska skate	0.76	0.002	0.857
4	Great sculpin	0.43	0.001	0.858
5	Sturgeon poacher	0.31	0.001	0.859
6	Gymnocanthus sp.	0.27	0.001	0.860
7 .	Arrowtooth flounder	0.23	0.001	0.860
8	Butter sole	0.12	<0.001	0.860
9	Yellow Irish lord	0.08	<0.001	0.861
0	Rex sole	0.05	<0.001	0.861

 $^{^{\}rm a}$ Total CPUE (all fish and invertebrates) = 457.40 kg/ha.

Table 11.--Rank order of abundance of the 20 most abundant species of fish taken during the 1984 bottom trawl survey, Subarea 2. (Total effort = 191.8 hectares (ha) trawled.)

Rank	Species	Mean CPUE (kg/ha)	Proportion of total CPUE ^a	Cumulative proportion	
1	Walleye pollock	189.65	0.580	0.580	
2	Flathead sole	19.78	0.060	0.640	
3	Arrowtooth flounder	18.14	0.055	0.695	
4	Yellowfin sole	16.09	0.049	0.744	
5	Pacific cod	13.07	0.040	0.784	
6 .	Rock sole	10.76	0.033	0.817	
7	Skate unidentified	5.31	0.016	0.833	
8	Alaska skate	4.38	0.013	0.846	
9	Pacific halibut	3.41	0.010	0.856	
0	Alaska plaice	3.03	0.009	0.865	
1	Yellow Irish lord	1.90	0.006	0.871	
2	Rex sole	1.53	0.005	0.876	
3	Bigmouth sculpin	1.39	0.004	0.880	
4	Eulachon	1.19	0.004	0.884	
5	Sablefish	0.97	0.003	0.887	
6	Searcher	0.82	0.003	0.890	
7	Aleutian skate	0.77	0.002	0.892	
8	Northern rockfish	0.49	0.001	0.893	
9	Armorhead sculpin	0.41	0.001	0.894	
0	Shortfin eelpout	0.30	0.001	0.895	

^aTotal CPUE (all fish and invertebrates) = 326.96 kg/ha.

Table 12. --Rank order of abundance of the 20 most abundant species of fish taken during the 1984 bottom trawl survey, Subarea 3S. (Total effort = 298.5 hectares (ha) trawled.)

Rank	Species	Mean CPUE (kg/ha)	Proportion of total CPUE ^a	Cumulative proportion
1	Walleye pollock	159.76	0.538	0.538
2	Pacific cod	32.86	0.111	0.649
3	Rock sole	12.87	0.043	0.692
4	Yellowfin sole	10.88	0.037	0.729
5	Flathead sole	8.07	0.027	0.756
6	Alaska plaice	6.61	0.022	0.778
7	Arrowtooth flounder	6.24	0.021	0.799
8	Skate unidentified	4.15	0.014	0.813
9	Pacific halibut	2.67	0.009	0.822
10	Alaska skate	2.64	0.009	0.831
11	Yellow Irish lord	1.78	0.006	0.837
12	Bigmouth sculpin	1.56	0.005	0.842
13	Great sculpin	0.97	0.003	0.845
14	Sparse toothed lycod	0.77	0.003	0.848
15	Aleutian skate	0.54	0.002	0.850
16	Greenland turbot	0.45	0.002	0.852
17	Sablefish	0.41	0.001	0.853
18	Armorhead sculpin	0.41	0.001	0.854
19	Warty sculpin	0.40	0.001	0.855
20	Rex sole	0.40	0.001	0.856

^aTotal CPUE (all fish and invertebrates) = 296.72 kg/ha.

Table 13.--Rank order of abundance of the 20 most abundant species of fish taken during the 1984 bottom trawl survey, Subarea 3N. (Total effort = 156.4 hectares (ha) trawled.)

Rank	Species	Mean CPUE (kg/ha)	Proportion of total CPUE ^a	Cumulative proportion	
1	Walleye pollock	174.12	0.656	0.656	
2	Pacific cod	38.96	0.147	0.803	
3	Flathead sole	11.52	0.043	0.846	
4	Alaska skate	4.19	0.016	0.862	
5	Arrowtooth flounder	3.80	0.014	0.876	
6	Greenland turbot	2.73	0.010	0.886	
7	Wattled eelpout	0.81	0.003	0.889	
8	Pacific halibut	0.72	0.003	0.892	
9	Rock sole	0.38	0.001	0.893	
10	Butterfly sculpin	0.38	0.001	0.894	
11	Warty sculpin	0.25	0.001	0.895	
12	Thorny sculpin	0.15	0.001	0.896	
13	Bigmouth sculpin	0.13	<0.001	0.897	
14	Alaska plaice	0.09	<0.001	0.898	
15	Great sculpin	0.04	<0.001	0.898	
16	Searcher	0.04	<0.001	0.898	
17	Yellowfin sole	0.03	<0.001	0.898	
18	Sparse toothed eelpout	0.03	<0.001	0.898	
19	Marbled snailfish	0.02	<0.001	0.898	
20	Pacific herring	0.02	<0.001	0.898	

 $^{^{\}rm a}$ Total CPUE (all fish and invertebrates) = 265.42 kg/ha.

north. Total CPUE on the outer shelf also declined somewhat to the north, dropping from 327 kg/ha in subarea 2 to 265 kg/ha in subarea 3N. Overall CPUE and rank order of species showed little change from the 1983 values for the three outer shelf regions (Hirschberger 1985).

Catches in the inner and middle shelf regions (subareas 4S and 4N) were heavily dominated by yellowfin sole, which comprised 41-49% of the total CPUE, at catch rates of 147 and 101 kg/ha (Tables 14-15). Pollock, Alaska plaice (Pleuronectes quadrituberculatus), rock sole, and Pacific cod followed yellowfin sole in abundance in the inner shelf area. (subarea 4S), with catch rates of 13-25 kg/ha. In the middle shelf (subarea 4N), pollock and rock sole CPUE declined to less than 10 kg/ha while the catch rate of Pacific cod remained nearly constant and that of Alaska plaice doubled to 42 kg/ha.

Total CPUE observed in both subareas was substantially less in 1984 than that reported for 1983 (Hirschberger 1985) a 16% decrease in CPUE in subarea 4S, and a 25% decrease in subarea 4N.

Overall fish abundance was very low in the region surrounding St. Matthew Island (subarea 5) in 1984. Total CPUE was only 91.5 kg/ha, as compared with a value of 288.9 kg/ha obtained in 1983, and no species was captured at rates in excess of 15 kg/ha mean CPUE (Table 16). This dramatic change reflects the near absence of both walleye pollock and Pacific cod from this region in 1984. Pollock, taken at a rate of 3.3 kg/ha, had been captured at a rate of 152 kg/ha in the same area in 1983. Similarly, the CPUE for Pacific cod was only 2.6 kg/ha in this area in 1984, compared with 37.7 kg/ha in 1983. Catches in subarea 5 in 1984 were dominated by Alaska plaice, butterfly sculpin (Melletes papilio), and various species of Myoxocephalus sculpins.

Table 14--Rank order of abundance of the 20 most abundant species of fish taken during the 1984 bottom trawl survey, Subarea 4S. (Total effort = 268.8 hectares (ha) trawled.)

Rank	Species	Mean CPUE (kg/ha)	Proportion of total CPUE ^a	Cumulative proportion
1	Yellowfin sole	147.06	0.490	0.490
2	Walleye pollock	24.71	0.082	0.572
3	Alaska plaice	20.02	0.067	0.639
4	Rock sole	19.62	0.065	0.704
5	Pacific cod	13.44	0.045	0.749
6	Flathead sole	2.65	0.009	0.758
7	Plain sculpin	1.90	0.006	0.764
8	Longhead dab	1.38	0.005	0.769
9	Skate unidentified	1.01	0.003	0.772
10	Pacific halibut	0.89	0.003	0.775
11	Alaska skate	0.81	0.003	0.778
12	Bigmouth sculpin	0.47	0.002	0.780
13	Arrowtooth flounder	0.23	0.001	0.781
14	Great sculpin	0.19	0.001	0.782
15	Sturgeon poacher	0.15	<0.001	0.782
16	Myoxocephalus sp.	0.14	<0.001	0.782
17	Yellow Irish lord	0.12	<0.001	0.782
18	Pacific herring	0.11	<0.001	0.782
19	Capelin	0.10	<0.001	0.782
20	Armorhead sculpin	0.09	<0.001	0.783

 $^{^{}a}$ Total CPUE (all fish and invertebrates) = 300.34 kg/ha.

Table 15.--Rank order of abundance of the 20 most abundant species of fish taken during the 1984 bottom trawl survey, Subarea 4N. (Total effort = 340.7 hectares (ha) trawled.)

Rank	Species	Mean CPUE (kg/ha)	Proportion of total CPUE ^a		
1	Yellowfin sole	100.88	0.414		
2	Alaska plaice	41.97	0.172	0.586	
3	Pacific cod	13.85	0.057	0.643	
4	Walleye pollock	8.62	0.035	0.678	
5	Rock sole	5.62	0.023	0.701	
6	Plain sculpin	2.56	0.010	0.711	
7	Warty sculpin	2.56	0.010	0.721	
8	Sparse toothed eelpout	1.36	0.006	0.727	
9	Flathead sole	1.28	0.005	0.732	
0	Longhead dab	0.61	0.003	0.735	
1	Alaska skate	0.59	0.002	0.737	
2	Pacific halibut	0.54	0.002	0.739	
3	Skate unidentified	0.50	0.002	0.741	
4	Great sculpin	0.42	0.002	0.743	
5	Sturgeon poacher	0 • 42	0.002	0.745	
6	Butterfly sculpin	0.33	0.001	0.746	
7	Myoxocephalus sp.	0.25	0.001	0.747	
8	Pacific herring	0.24	0.001	0.748	
9	Armorhead sculpin	0.16	0.001	0.749	
0	Saffron cod	0.12	<0.001	0.750	

 $^{^{\}rm a}$ Total CPUE (all fish and invertebrates) = 243.82 kg/ha.

Rank	Species	Mean CPUE (kg/ha)	Proportion of total CPUE ^a	Cumulative proportion	
1	Alaska plaice	14.91	0.157	0.157	
2	Butterfly sculpin	13.86	0.146	0.303	
3	Warty sculpin	8.15	0.086	0.389	
4	Myoxocephalus sp.	5.34	0.056	0.445	
5	Yellowfin sole	4.34	0.046	0.491	
6	Walleye pollock	3.33	0.035	0.526	
7	Pacific cod	2.61	0.027	0.553	
8	Flathead sole	2.01	0.021	0.574	
9	Sparse toothed eelpout	1.12	0.012	0.586	
0	Alaska skate	0.44	0.005	0.591	
11	Pacific herring	0.42	0.004	0.595	
12	Plain sculpin	0.35	0.004	0.599	
13	Skate unidentified	0.25	0.003	0.602	
4	Rock sole	0.18	0.002	0.604	
15	Capelin	0.18	0.002	0.606	
6	Arctic cod	0.11	0.001	0.607	
7	Snailfish unidentified	0.10	0.001	0.608	
8	Limanda sakhalinensis	0.05	0.001	0.609	
9	Pacific halibut	0.04	<0.001	0.609	
0	Greenland turbot	0.03	<0.001	0.609	

^aTotal CPUE (all fish and invertebrates) = 95.01 kg/ha.

Abundance, Distribution, and Size and Age Composition of Principal Fish Species

In this section, geographical distribution, biomass and population estimates, and size canposition are presented for each of the following economically important eastern Bering Sea groundfish populations: walleye pollock, Pacific cod, sablefish, yellowfin sole, rock sole, flathead sole and Bering flounder, Alaska plaice, Greenland turbot (Reinhardtius hippoglassoides), arrowtooth and Kamchatka flounder, and Pacific halibut. Distribution is shown in shaded contour plots of CPUE in kilograms per hectare. Estimated biomass, population number, and mean size (in length and weight) are summarized by stratum and for the entire survey area. Histograms of relative length canposition for each stratum and for the total survey area, as well as histograms of absolute abundance (in number's) by length interval for the total survey area, are given for all of the above species. Estimated numbers by age class are shown for the on-bottom portion of the walleye pollock population; at this writing, age information is unavailable for the remaining species.

The rank order of relative abundance of all fish and invertebrates caught during the 1984 survey is given in Appendix B. Detailed computer listings of population and biomass estimates for each species by stratum are given in Appendix C. Population estimates by sex and size class are found in Appendix D. The age-length key used in determining the age canposition of walleye pollock is given in Appendix E, and the estimated pollock population numbers by age class are listed in Appendix F.

Figure 18. --Distribution and relative abundance in kg/ha of walleye pollock during the 1984 survey.

Table 17. --Abundance estimates and mean size of walleye pollock by subarea and subareas combined, 1984 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean si individ	_
Subarea	CPUE ^a (kg/ha)	biomass ^a (t)	estimated biomass	population ^a (10 ⁶)	estimated population	Weight (kg)	Length (cm)
1	128.77	1,013,613	0.221	1,268	0.167	0.799	47.56
2	189.63	1,154,448	0.252	1,770	0.233	0.652	44.53
3N	174.12	836,205	0.182	1,766	0.233	0.473	38.49
3S	159.75	1,292,998	0.282	2,387	0.314	0.542	40.75
4N	8.62	79,070	0.017	138	0.018	0.573	31.44
4 S	24.70	201,382	0.044	247	0.033	0.815	46.55
5	3.33	7,608	0.002	18	0.002	0.415	27.19
All subareas combined ^b	98.69	4,585,324		7,594		0.604	42.23
95% confidence interval		3,681,023- 5,489,624		6,123 - 9,066			

^aVariances of abundance estimates are given in Appendix C-1.

 $^{^{\}mathrm{b}}\mathrm{Minor}$ discrepancies between sums over subareas and totals may occur due to rounding.

Figure 19. --Estimated relative size composition of the walleye pollock population sampled during the 1984 survey, by subarea and for the total survey area (sexes combined).

Table 18.--Estimated population size of walleye pollock age groups by subarea and for all subareas combined (millions of fish).

	Year			Suk	oarea				All subareas	Proportion
Age	Class	1	2	3N	38	4N	4 S	5	combined	of total
₁ a		21.42	7.34	116.90	104.58	77.90	21.75	11.76	361.67	0.0476
2	1982	6.43	13.66	69.18	148.02	1.21	2.38	0.14		
3	1981	9.13	38.37	184.78	167.57	0.03	2.63	0.00		
4	1980	56.54	186.13	469.72	417.88	0.32	11.84	0.01		
5	1979	189.66	373.57	337.20	456.52	2.76	30.59	0.27	1,390.57	
6	1978	732.84	992.62	475.89	866.56	17.76	110.04	2.24		
7	1977	176.27	133.70	82.07	167.30	13.74	34.62	1.77	609.47	
8	1976	42.11	17.93	16.62	33.05	8.99	14.54	0.96		
9	1975	19.86	4.40	7.65	14.54	6.52	8.82	0.50	62.30	
10	1974	6.16	0.78	2.65	4.88	3.09	4.11	0.32		
11	1973	3.93	0.60	1.73	2.86	2.48	2.93	0.19	14.71	
12 ^a		3.68	0.41	1.88	3.04	3.10	2.91	0.16	15.17	
All	ages		•							
com]	$\mathtt{pined}^{\mathbf{b}}$	1,268.03	1,769.52	1,766.26	2,386.79	137.90	247.16	18.33	7,593.99	1.0000

 $^{^{}a}$ Age '1' includes both 1-year-old fish and all fish smaller than the smallest individual in the aged sample. Age '12' includes 12-year-old fish and all fish larger than the largest individual in the aged sample.

^bMinor discrepancies between sums over subareas and totals may occur due to rounding.

Figure 20.--Estimated size composition of the walleye pollock population sampled during the 1984 survey, in millions of fish (sexes combined).

Figure 21. --Estimated age composition of the walleye pollock population sampled during the 1984 surrey, in millions of fish (sexes combined).

Figure 22. --Distribution and irelative abundance in kg/ha of Pacific cod during the 1984 survey.

Table 19. --Abundance estimates and mean size of Pacific cod by subarea and subareas combined, 1984 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean si individ	
Subarea	CPUE ^a (kg/ha)	biomass ^a (t)	estimated biomass	population ^a (10 ⁶)	estimated population	Weight (kg)	Length (cm)
1	28.52	224,503	0.225	178	0.280	1.263	40.19
2	13.07	79,578	0.080	31	0.049	2.575	54.92
3N	38.96	187,107	0.187	78	0.123	2.398	51.85
38	32.86	265,921	0.266	148	0.233	1.802	46.51
4N	13.85	127,012	0.127	85	0.134	1.491	45.32
4 S	13.43	109,514	0.110	109	0.172	1.005	38.51
5	2.61	5,954	0.006	7	0.011	0.865	36.01
All subareas combined ^b	21.51	999,588		635		1.574	44.16
95% confidence interval		872,793 - 1,126,384		546 - 726			

^aVariances of abundance estimates are given in Appendix C-2.

 $^{^{\}mathrm{b}}\mathrm{Minor}$ discrepancies between sums over subareas and totals may occur due to rounding.

Figure 23.--Estimated relative size composition of the Pacific cod population sampled during the 1984 survey, by subarea and for the total survey area (sexes combined).

Figure 24. --Estimated size composition of the Pacifc cod population sampled during the 1984 survey, in millions of fish (sexes cabined).

Figure 25. --Distribution and relative abundance in kg/ha of sablefish during the 1984 survey.

Table 20.--Abundance estimates and mean size of sablefish by subarea and subareas combined, 1984 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean si	
Subarea	CPUE ^a (kg/ha)	biomass ^a (t)	estimated biomass	population ^a (10 ³)	estimated population	Weight (kg)	Length (cm)
1	<0.01	16	0.002	29	0.005	0.544	
2	0.97	5,900	0.639	3,867	0.696	1.526	53.16
3N	0	0	0	. 0	0		
3S	0.41	3,310	0.359	1,661	0.299	1.993	53.92
4N	0	0	0	0	0		
4 S	0	0	0	0	0		~-
5	0	0	0	0	0		
All subareas combined ^b	0.20	9,226		5,557		1.660	53.39
95% confidence interval		2,334- 16,118		1,378- 9,737	·		•

^aVariances of abundance estimates are given in Appendix C-3.

 $^{^{\}mathrm{b}}\mathrm{Minor}$ discrepancies between sums over subareas and totals may occur due to rounding.

SABLEFISH Outer shelf subareas

All subareas combined

Figure 26. --Estimated relative size composition of the sablefish population sampled during the 1984 survey, by subarea and for the total survey area (sexes combined).

Figure 27.--Estimated size composition of the sablefish population sampled during the 1984 survey, in millions of fish (sexes combined).

Figure 28.--Distribution and relative abundance in kg/ha of yellowfin sole during the 1984 survey.

Table 21 .-- Abundance estimates and mean size of yellowfin sole by subarea and subareas combined, 1984 bottom trawl survey.

Subarea	Mean CPUE ^a (kg/ha)	Estimated apparent biomass ^a (t)	Proportion of total estimated biomass	Estimated apparent populationa (10 ⁶)	Proportion of total estimated population	Mean size per individual	
						Weight (kg)	Length (cm)
1	132.81	1,045,448	0.311	4,650	0.307	0.225	26.45
2	16.09	97,972	0.029	315	0.021	0.311	28.99
3N	0.03	144	<0.001	<1	<0.001	0.353	30.98
3S	10.88	88,089	0.026	284	0.019	0.310	29.07
4N	100.86	924,943	0.275	4,104	0.271	0.225	25.83
4 S	147.05	1,198,763	0.356	5,761	0.380	0.208	25.56
5	4.34	9,924	0.003	. 30	0.002	0.330	30.83
All subareas		•					
combinedb	72.43	3,365,281		15, 145		0.222	26.06
95%		2 071 240		42 202			•
confidence interval		2,971,349- 3,759,213		13,303- 16,987			·

 $^{{}^{\}rm a}{\rm Variances}$ of abundance estimates are given in Appendix C-4.

 $^{^{\}mathrm{b}}\mathrm{Minor}$ discrepancies between sums over subareas and totals may occur due to rounding.

Figure 29.--Estimated relative size composition of the yellowfin sole population sampled during the 1984 survey, by subarea and for the total survey area (sexes combined).

Figure 30.--Estimated size composition of the yellowfin sole population sampled during the 1984 survey, in millions of fish (sexes combined).

Figure 31.--Distribution and relative abundance in kg/ha of rock sole during the 1984 survey.

Table 22. --Abundance estimates and mean size of rock sole by subarea and subareas combined, 1984 bottom trawl survey.

	Mean CPUE ^a (kg/ha)	Estimated apparent biomass ^a (t)	Proportion of total estimated biomass	Estimated apparent population a (10 ⁶)	Proportion of total estimated population	Mean size per individual	
Subarea						Weight (kg)	Length (cm)
1	74.18	583,894	0.604	3,230	0.574	0.181	24.28
2	10.76	65,530	0.068	259	0.046	0.253	26.08
3N	0.38	1,837	0.002	5	0.001	0.386	25.40
3S	12.86	104,125	0.108	421	0.075	0.247	25.23
4N	5.62	51,512	0.053	555	0.099	0.093	17.64
4 S	19.62	159,967	0.165	1,157	0.205	0.138	20.72
5	0.18	415	<0.001	4	0.001	0.108	17.64
All subareas combined ^b	20.82	967, 279		5,630		0.172	23.05
95% confidence interval		795,783- 1,138,775		4,529- 6,732			ı

 $^{{}^{\}rm a}{\rm Variances}$ of abundance estimates are given in Appendix C-5.

 $^{^{\}mathrm{b}}\mathrm{Minor}$ discrepancies between sums over subareas and totals may occur due to rounding.

Figure 32. --Estimated relative size composition of the rock sole population sampled during the 1984 survey, by subarea and for the total survey area (sexes combined).

Figure 33.--Estimated size composition of the rock sole population sampled during the 1984 survey, in millions of fish (sexes combined).

Figure 34.--Distribution and relative abundance in kg/ha of flathead sole and Bering flounder during the 1984 survey.

Table 23.--Abundance estimates and mean size of flathead sole and Bering flounder by subarea and subareas combined, 1984 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean size per individual		
Subarea	CPUE ^a (kg/ha)	biomass ^a (t)	estimated biomass	population ^a (10 ⁶)	estimated population	Weight (kg)	Length (cm)	
1	7.85	61,815	0.181	260	0.138	0.238	27.80	
2	19.78	120,398	0.353	776	0.411	0.155	23.37	
3N	11.52	55,333	0.162	179	0.095	0.309	29.34	
3S	8.07	65,338	0.192	437	0.232	0.149	23.57	
4N	1.28	11,754	0.034	81	0.043	0.145	21.12	
4 S	2.65	21,632	0.063	131	0.069	0.166	23.78	
5	2.01	4,595	0.013	22	0.012	0.208	26.37	
All subareas combined ^b	7.34	340,865		1,886		0.181	24.56	
95% confidence interval		282,903- 398,827		1,613- 2,159				

 $^{^{\}rm a}{\rm Variances}$ of abundance estimates are given in Appendix C-6.

^bMinor discrepancies between sums over subareas and totals may occur due to rounding.

Figure 35. --Estimated relative size composition of the flathead sole and Bering flounder population sampled during the 1984 survey, by subarea and for the total survey area (sexes combined).

Figure 36. --Estimated size composition of the flathead sole and Bering flounder population sampled during the 1984 survey, in millions of fish (sexes combined).

Figure 37. --Distribution and relative abundance in kg/ha of Alaska plaice during the 1984 survey.

Table 24.--Abundance estimates and mean size of Alaska plaice by subarea and subareas combined, 1984 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total		ize per
Subarea	CPUE ^a (kg/ha)	biomass ^a (t)	estimated biomass	population ^a (10 ⁶)		Weight (kg)	
1	9.20	72,395	0.100	128	0.095	0.565	36.30
2	3.03	18,466	0.025	34	0.025	0.544	37.91
3N	0.09	445	0.001	<1	<0.001	1.015	
3s	6.61	53,465	0.074	63	0.047	0.849	38.04
4N	41.96	384,804	0.529	758	0.563	0.507	33.67
4 S	20.02	163,199	0.225	323	0.240	0.505	33.79
5	14.91	34,073	0.047	40	0.030	0.847	39.28
All subareas com- bined ^b	15.64	726,846		1,347		0.540	34.34
95% confi- dence interval		531,645 - 922,047		996 - 1,699			

^aVariances of abundance estimates are given in Appendix C-7.

 $^{^{\}mathrm{b}}\mathrm{Minor}$ discrepancies between sums over subareas and totals may occur due to rounding.

Figure 38. --Estimated relative size composition of the Alaska plaice population sampled during the 1984 survey, by subarea and for the total survey area (sexes combined).

Figure 39. --Estimated size composition of the Alaska plaice population sampled during the 1984 survey, in millions of fish (sexes combined).

Figure 40.--Distribution and relative abundance in kg/ha of Greenland turbot during the 1984 survey.

Table 25.--Abundance estimates and mean size of Greenland turbot by subarea and subareas combined, 1984 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean size per individual		
Subarea	CPUE ^a (kg/ha)	biomass ^a (t)	estimated biomass	population ^a (10 ³)	estimated population	Weight (kg)	Length (cm)	
1	0	0	0	0	0			
2	0.15	892	0.050	191	0.009	4.667		
3N-	2.73	13,126	0.733	17,799	0.801	0.737	42.11	
3\$	0.45	3,646	0.204	3,867	0.174	0.943	46.78	
4N	0.02	160	0.009	216	0.010	0.742	48.25	
4S	<0.01	12	0.001	32	0.001	0.363		
5	0.03	66	0.004	116	0.005	0.567	41.25	
All subareas combinedb	0.39	17,901		22,221		0.806	42.98	
95% confidence interval		13,183- 22,619		16,043- 28,399				

 $^{{}^{\}rm a}{\rm Variances}$ of abundance estimates are given in Appendix C-8.

 $^{^{\}mathrm{b}}\mathrm{Minor}$ discrepancies between sums over subareas and totals may occur due to rounding.

GREENLAND TURBOT

Outer shelf subareas

3N

MEAN LENGTH = 42.1

Figure 41.--Estimated relative size composition of the Greenland turbot population sampled during the 1984 survey, subarea 3N (sexes combined). (Sample sizes in the remaining subareas were insufficient to provide meaningful size-composition estimates. 1

Figure 42. --Distribution and relative abundance in kg/ha of arrowtooth and Kamchatka flounder during the 1984 survey.

Table 26.--Abundance estimates and mean size of arrowtooth and Kamchatka flounders by subarea and subareas combined, 1984 bottom trawl survey.

	Estimat Mean apparen		Proportion of total	apparent	Proportion of total	Mean size per individual		
Subarea	CPUE ^a (kg/ha)	biomass ^a (t)	estimated biomass	population ^a (10 ³)	estimated population	Weight (kg)	Length (cm)	
1	0.23	1,798	0.010	5,219	0.009	0.345		
2	18.13	110,398	0.604	338,988	0.613	0.326	31.80	
3N	3.80	18,249	0.100	24,390	0.044	0.748	41.79	
38	6.24	50,529	0.276	174,046	0.315	0.290	30.18	
4N	<0.01	22	<0.001	493	0.001	0.045		
4 S	0.23	1,882	0.010	10,130	0.018	0.186	28.24	
5	0	Ó	0	0	·	0	~-	
All subareas						,		
combinedb	3.94	182,877		553,265	•	0.331	31.67	
95%				٠.				
confidence interval		138,604- 227,157		421,283- 685,247				

^aVariances of abundance estimates are given in Appendix C-9.

 $^{^{\}mathrm{b}}\mathrm{Minor}$ discrepancies between sums over subareas and totals may occur due to rounding.

Figure 43.--Estimated relative size composition of the arrowtooth and Kamchatka flounder population sampled during the 1984 swey, by subarea and for the total survey area (sexes combined).

Figure 44. --Estimated size composition of the arrowtooth and Kamchatka flounder population sampled during the 1984 survey, in millions of fish (sexes combined).

Figure 45.--Distribution and relative abundance in kg/ha of Pacific halibut during the 1984 survey.

Table 27.--Abundance estimates and mean size of Pacific halibut by subarea and subareas combined, 1984 bottom trawl survey.

	Mean	Estimated apparent	Proportion of total	Estimated apparent	Proportion of total	Mean si individ	_
Subarea	CPUE ^a (kg/ha)	biomass ^a (t)	estimated biomass	population ^a (10 ⁶)	estimated population	Weight (kg)	Length (cm)
1	4.05	31,918	0.355	13,564	0.401	2.353	55.81
2	3.41	20,741	0.230	5,833	0.172	3.556	63.54
3N	0.72	3,465	0.038	507	0.015	6.835	62.96
3S	2.67	21,643	0.240	8,734	0.258	2.478	55.22
4N	0.54	4,912	0.055	2,184	0.064	2.249	56.21
4 S	0.89	7,245	0.080	2,906	0.086	2.493	58.62
5	0.04	84	0.001	136	0.004	0.618	38.77
All subareas							
bined ^b	1.94	90,008		33,865	'	2.658	57.30
95% confi- dence level		69,203 - 110,810		26,063- 41,668			·

 $^{{}^{\}rm a}{\rm Variances}$ of abundance estimates are given in Appendix C-10.

^bMinor discrepancies between sums over subareas and totals may occur due to rounding.

Figure 46.--Estimated relative size composition of the Pacific halibut population sampled during the 1984 survey, by subarea and for the total survey area (sexes combined).

Figure 47. --Estimated size composition of the Pacific halibut population sampled during the 1984 survey, in millions of fish (sexes combined).

REFERENCES

- Bakkala, R. G., and K. Wakabayashi (editors). 1985. Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979. Int. North Pac. Fish. Comm., Bull. 44, 252 p.
- Bakkala, R. G., J. J. Traynor, K. Teshima, A. M. Shimada, and H. Yamaguchi. 1985. Results of cooperative U.S.-Japan groundfish investigations in the eastern Bering Sea during June-November 1982. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-87, 448 p.
- Eschmeyer, W. N., E. S. Herald and H. Hammann. 1983. A field guide to Pacific Coast Fishes of North America. Houghton Mifflin Co. Boston, MA, 336 p.
- Geisser, S. and W. F. Eddy. 1979. A predictive approach to model selection. J. Am. Stat. Assoc. 74(365):153-160.
- Hirschberger, W. A. 1985. Data report: 1983 Bottom trawl survey
 of the eastern Bering Sea continental shelf. U.S. Dep.
 Commer., NOAA Tech. Memo. MNFS F/NWC-94, 225 p.
- Hughes, S. E. 1976. System for sampling large trawl catches of research vessels. J. Fish. Res. Board Can. 33:833-839.
- Kessler, D. W. 1985. <u>Alaska's Saltwater Fishes and Other Sea Life</u>. Alaska Northwest Publ., Anchorage, AK.
- Otto, R. S., R. A. Macintosh, K. L. Stahl-Johnson, and S. J. Wilson. 1984. Report to industry on the 1984 eastern Bering Sea crab survey. NWAFC Processed Rep. 84-17, 68 p. Kodiak Facility, Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., P.O. Box 1638, Kodiak, AK 99615.
- Pereyra, W. T., J. E. Reeves, and R. G. Bakkala. 1976. Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. Processed Rep., 619 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.
- Quast, J. C., and E. L. Hall. 1972. List of fishes of Alaska and adjacent waters with a guide to some of their literature. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-658, 47 p.
- Robins, C. R. (chairman). 1980. A list of common and scientific names of fishes from the United States and Canada, Am. Fish. Soc., Spec. Publ. 12, 174 p.

- Sakamoto, K. 1984. Interrelationships of the family Pleuronectidae (Pisces: Pleuronectiformes). Mem. Fac. Fish., Hokkaido Univ. 31:95-215.
- Sample, T. M., K. Wakabayashi, R. G. Bakkala, and H. Yamaguchi. 1985. Report of the 1981 cooperative U.S.-Japan bottom trawl survey of the eastern Bering Sea continental shelf and slope. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-88, 332 p.
- Wakabayashi, K., R. G. Bakkala, and M. S. Alton. 1985. Methods of the U.S.-Japan demersal trawl surveys. In R. G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979, p. 7-29. Int. North Pac. Fish. Comm., Bull. 44.

APPENDIX A

Station and Catch Data, 1984 Eastern Bering Sea Trawl Survey
Appendix A contains computer listings of station and catch
data for all successfully completed stations used in the analysis
of 1984 Bering Sea survey data. Missing haul numbers indicate
unsatisfactory tows (Alaska hauls 64 and 98) or non-station tows
conducted for gear comparison (Chapman hauls 161-188 and 228-251,
Alaska hauls 159-186) or special crab-assessment studies (Alaska
hauls 187-209).

Latitudes and longitudes are given in degrees, minutes, and tenths of minutes. Gear depths are reported in meters, duration of tow in tenths of hours, and distance fished in nautical miles. A performance code of '0' indicates a satisfactory tow; a performance code of '1' indicates that the gear was hung up or ripped at some point during the haul, but that the catch was judged by the field party chief and the lead fisherman to have been unaffected. Gear code 37 represents the modified 83-112 eastern trawl. Catch weights are given in kilograms.

List of Tables

Table											Page
A-1.	Station	and	catch	data	for	the	NOAA	vessel	Chapn	man	91
A-2.	Station	and	catch	data	for	the	chart	ered v	essel	Alaska	110

THIS PAGE INTENTIONALLY LEFT BLANK

HAUL #	1	. 2	3	4	5.	6	7	8	9	10	11
MCN TH/DAY/YEAR	6/ 9/84	6/10/84	6/10/94	6/10/94	6/10/84	6/11/84	6/11/84	5/11/84	6/11/84	6/12/94	5/12/84
LATITUDE START	57 18.0	57 39.1	57 59.3	58 19.5	58 0-4	57 40-4	57 20,5	57 0-1	56 41-2	56 19 . 0	56 i 9.1
LONGITUDE START	158 26.9	158 21.2	158 18.9	159 32.5	159 36.6	159 38.1	159 40-1	159 42.7	159 45.4	161 0.4	160 59.4
LATITUDE END	57 19.1	57 49.6	58 C.9	58 19.6	57 58.3	57 38.9	57 19.0	56 50.€	56 40.2	56 20.5	56 40.4
LONGITUDE END	158 24.9	158 21.5		159 35.4	159 36.7	159 38.8	159 39-8	159 42.7	159 47.4	161 0.6	160 59.2
LORAN STAPT	33604.50	32873-80	32758.90	32774-40	32904-00	33027.00	33144-30	33259.20	33360.50	33642-30	33544.40
LORAN START	45434.50	45397.00		45877.00	45899.4)		45923-50	45946.90	45972.90	46483.50	46458.39
LORAN END	32994-70	32670-80	32749.60	32780-00	32913-50	33036-90	33151-90	33266-70	33370-10	33635-90	33537.30
LORAN END	45421-30	45399.00	45385.70	45895.50	45899.60	45912.50	45921-90	45947.50	45987 20	46484-40	46457.00
GEAR DEPTH	17	20	2 1	14	23	28	32	32	21	30	40
DURATION IN HOURS	0.50	0.50	0.50	0.50	0-50	0.50	0.50	0.50	o . 50	0.50	0• 5ņ
DISTANCE FISHED	1.53	1.55	1.58	1.51	1.50	1.54	1.52	1.48	1.54	1.55	1-43
PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	3 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
TEN UNHANCE / GEAS	0 / 31	0 / 3/	0 / 1/	J / J/	0 , 3,	0 / 3/	0 / 5/	0 / 3/	0 / 3/	0 / 31	U / 3/
PCLLOCK	25.4	0.9	311.0	1.3	21-0	1254.8	50.3	2575.8	204.3	2572.2	0.0
PAC COD	544.5	99.3	940.6	46.0	237.7	144.2	152-4	111.8	139.1	326.9	12.3
PAC OC PERCH	(.0	0.9	0.0	0.0	0.7	0.0	0.0	0-0	0.0	9.0	0.0
CTHER RCKFISH	C-0	0.0	. 0.0	0.0	0.0	0.0	C-0				
SABLEF ISH	-							0.0	0-0	0.0	0-0
	0.0	0 - ú	0.0	0.0	0.2	0.0	0.0	0.0	0.0	9- 0	0.0
PAC HERRING	2.9	9.5	38.2	0.0	0.0	0.0	0.7	0.0	192.0	0.0	0.0
ATKA MACKEREL	C-0	0.0	C-0	0.0	0.7	0.0	C-0	0-0	0-0	0.0	0.0
SCULPINS	4.1	7.3	1.7	36.8	27.9	6*0	1-8	1 - 3	1-1	1-1	34.6
EELPOUTS	0.0	0.0	9. 9	0 • 0	0.1	0.0	C.0	0_0	0.0	0.0	0.0
OTHER RNDFISH	0.9	0.3	5.6	1 - 3	2.8	2.9	0.6	0.6	9-1	1-1	3-1
TOT ROUNDFISH	577.7	117-3	1297.1	85.4	289.4	1401-8	205.8	2689.5	1186.6	2901.4	50.0
YELLOW SOLE	377.8	67 1	179.0	983.3	755.4	185.2	55 (20, 0	170 1	74.2 7	914 0
		67.1	_				55-5	204.8	139-1	342.7	814.9
RUCK SOLE	150.5	133.8	199.2	90-4	312.0	439-3	416-2	329.2	313.5	615.5	558.7
FLATHEAD SOLE	0.0	0.5	0.0	0.8	4-4	4.8	13-6	5- 0	8.8	9-1	47.7
ALASKA PLAICE	0.0	-0-0	0.0	92.9	0.0	1.9	C - 3	C.O	0.0	22.6	55.3
GREENLAND TBT	C+0	0.0	0-0	C-0	0.0	0-0	0.0	0.0	0.0	0-0	0-0
ARRCHIDDTH FL	C-0	0.0	C-0	0.0	0.0	0.0	0.0	0.0	0.0	1-1	0 − 3
PAC HALIBUT	54.9	7.8	23.6	30.8	49.3	19.5	12.3	35.2	4.5	39.6	12.5
OTHER FLTFISA	89.9	19.7	C-0	70-3	10-6	15-2	4 - 3	0-0	7.3	1.6	0.25
TOT FLATFISH	1173-1	219.9	400.8	1268.6	1130.7	665-9	502-3	574.3	473-3	1033.2	1500-1
SKATES	C. 0	0.0	C-0	0.9	0.0	0.0	C. 0	0.0	0.0	24.0	0.0
		-						0-0		24.9	0 - C
TOT ELASMOBRH	C-0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0-0	24_9	0.0
RED KING CRAS	0.0	1-85	0.0	3.6	6-1	20.9	10.2	18.6	1.3	12-0	718.0
BLUE KING CRAS	C.O	0.0	0.0	0.0	0.0	0.0	C.0	0-0	0.0	0_0	0.0
I CRIAB . RENNAT	C.0	0.0	C. 0	0.0	0.0	2.3	11-1	5.0	1.6	4.3	2?.5
TANNER, OPILIO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
TANNER, HYBRID	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	
OTHER CRAS	4.9	9. 2	2.9	0.8	1.3	0.2	2.6	4.9			0-0
SNAILS	C - O	0.0	1.4		0-0			0.0	2.3 0.0	22 - 3 2 - 4	22.9
				0.2		0-1	1-1				1.5
SHRIMP	0.0	0.1	0-0	0.0	0.0	0.1	C. 0	0.0	0-0	0.0	0.0
STARFISH	209.2	81.2	17-1	151-0	48.9	133.7	73-7	295.3	202.8	61-1	38.4
SQUID	C-0	0-0	0-0	0-0	0-0	0.0	0.0	0.0	0-0	0.0	0.0
CCTOPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	G- 0	0.0	0.0	0.0
CTHER INVERTS	C • 2	0.7	4 - 1	1.0	12-3	11.9	110.7	63.0	29.6	49. 8	130_4
TOTAL INVERTS	214.3	94.0	25.4	156.7	59-1	169-1	209.5	386•8	239.2	151.9	933.7
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	C-0	0.0	0.0	0.0	0.0
TOTAL CATCU		,24 •	1727 1				017 (1898.0	£ 111 4	
TOTAL CATCH	1965.1	421-1	1723.4	1510.7	1489.2	2236•8	917.6	3650-6	1070m'	4111-4	2583.9

HONTMAYMEN								•				
LATITUDE STATT 56 55.1 57 10.9 57 38.9 57 38.9 57 99.1 53 19.0 58 19.7 58 0.6 57 0.4 57 19.7 55 59.9 56 47.3 100 100 100 100 100 100 100 100 100 10	HAUL #	12	13	1 4	15	16	17	1.8		20	21	2 2
LONG IT DUE START LATTINGE RAD TO 6 57 -20 57 465 59 -27 150 56.7 160 52.9 160 52.2 160 52.2 160 52.2 160 52.2 160 52.2 160 52.2 160 52.2 160 52.2 160 52.2 160 52.2 160 52.2 160 52.2 150 50.	MONTH/DAY/YEAR			6/12/84		6/13/84	6/13/84	6/13/84	5/14/84	6/14/84	6/14/84	6/14/84
LAITIUDE END	LATITUDE START		57 18.9	57 38-9		58 19. 0	58 19.7	58 0.6	57 40.4	57 19.9	56 59 . 9	56 42.3
LUMENT LOUR LOUR LOUR STATE ST	LONGITUDE START	160 57.5	150 56.7	160 53.9	160 52.2	160 45.6	162 2-1	162 7.2	162 5.8	162 9.8	162 10.6	162 12.4
LONGTIONE END 150 57-3 160 57-7 160 54-4 160 54-1 160 44-7 162 4-9 162	LATITUDE END	57 C.5	57 20.3	57 40.5		58 20.4	58 19.5	57 59-1	57 39.4	57 19-0	56 58 6	
LOHAN START 404-9,9 464-10 4641-10 4597-60 3202-10 31072-00 3202-10 31072-00 3202-10 31072-00 3202-10 31072-00 3202-10 31072-00 31												
Comman Start 45445.99 4645.40 46411.70 46395.40 46341.70 46361.70 33966.00 33966.00 33966.00 33965.00 34996.50 34996.												
LOAM FUD LOAM F								-	_			
LORAN END 46443-10 46441-50 46401-50 66401-50 66401-70 46825-70 46892-10 46892-10 68905-00 46905-00								_		_		
GEAR DEPTH 37					_			-			-	
DUARTION IN ADURS 0.50 0.73 0.737 0.73												
DISTANCE FISHED 1.49 PERFORMANCE / GEAZ 0 / 37 0 /			-				·				3.5	41
PERFORMANCE / GEAR 0 / 37 0 /	DURATION IN HOURS				0.50	0.50	0.50	0.50	0-50		0 - 5 n	0.50
POLLOCK 891.2 518.0 46.7 111.5 0.0 94.1 27.7 5544.9 29.3 15.0 427.3 PAC COD 9.3 49.4 88.9 239.3 29.5 364.1 27.7 5544.9 29.3 15.0 427.3 PAC COD PERCH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DISTANCE FISHED	1.49	1.45	1.54	1.47	1.52	1-48	1-48	1.32	1 - 51	1.48	1-49
PAC COD PERCH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
PAC COD PERCH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	,											
PAC COD PERCH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	POLLOCK	893.2	518.0	46.7	111.5	0-0	94-1	27-7	5544.9	29.3	15.C	422-3
PAC DC PERCH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							· · · · -				_	
OTHER REKFT 5th O.0				_								
SABLETISH C.0 Q.0 Q.0 Q.0 Q.0 Q.0 Q.0 Q.0			_				•					
PAC HERRING O.1 0.7 0.0 9.0 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0												
ATKA MACKÉREL C.O D.O C.O D.O D.O D.O D.O D.O									• •		-	
SCULPINS	_ · · · · · · · · · · · · · · · · · · ·			_								
EELDUIS 0.0 0.1 0.7 0.2 0.5 0.7 0.7 0.2 0.5 1.3 3.5 0.7 0.0 0.0 0.1 0.7 0.2 0.5 1.3 3.5 0.7 0.0 0.0 0.1 101 ROUNDFISH 017.7 568.9 135.8 413.6 46.0 497.9 334.1 5719.0 151.7 24.2 440.2 YELUM SOLE 1295.2 155.1 141.5 125.2 253.8 1364.6 432.5 235.9 152.7 419.2 357.4 288.5 ROCK SOLE 533.1 141.5 125.2 253.8 36.0 0.0 2.1 4.1 6.9 30.3 27.7 24.9 41.9 41.9 42.9 41.1 41.1 42.9 42.9 44.0 31.0 3						,		_		0.9	0.0	0.0
OTHER RANDFISH C-1	SCULPINS	15.0	0-0	0.0	12.2	0.6	16.2	7.3	0.5	1.0	0.0	1 - 3
TOT ROUNDFISH 917-7 568-8 135-8 413-6 46.0 497-9 334-1 5719-0 151.7 24.2 440.2 YELLOM SDLE 1295-2 155.1 429.6 1451.5 1366.6 432-5 255.9 152-7 419.2 357.4 298.5 ROCK SDL2 533.1 141.5 125.2 253.8 37.6 245.0 196.9 46.3 315.9 221.4 116.1 ROCK SDL2 531.1 141.5 125.2 253.8 37.6 245.0 196.9 46.3 315.9 221.4 116.1 RATHEAD SOLE 45.5 44.0 52.1 8.5 0.0 2.1 4.1 6.9 30.3 27.7 24.9 ALASKA PLAICC 176.3 7.3 16.3 11.9 0.0 3.5 9.1 23.1 60.6 28.1 77.6 GREENLAND 131 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	EELPOUTS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C - 0	0.0	9-0	0 - 0
TOT ROUNDEISH 917-7 568-8 135-8 413-6 46-0 497-9 334-1 5719-0 151.7 24-2 440-2 YELLOW SOLE 1295-2 155-1 429-6 1451-5 1364-6 432-5 235-9 152-7 419-2 357-4 298-5 ROCK SOLE 533-1 141-5 125-2 253-8 37-6 245-0 196-9 46-3 315-9 221-4 116-1 FLATHEAD SOLE 45-5 44-0 58-1 8-6 0.0 2-1 4-1 6-9 30.3 27-7 24-9 ALASKA PLAICE 176-3 7-3 16-3 11-9 0.0 3-5 9-1 23.1 60-6 28-1 77-6 REENLAND 197 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	OTHER RNDFISH	C - 1	0.7	0.2	0.5	1.3	3.5	0-7	0.0	0.1	0.2	0.0
YELLOW SILE 1295-2 155-1 429-6 1491-5 1364-6 432-5 235-9 152-7 419-2 357-4 298-5 ROCK SOLE FRATHEAD SCLE 45-6 44-0 58-1 6-6 6-6 165-1 6-6 6-7 16-3 7-7 16-3 7-7 16-3 7-7 16-3 11-7 0-0 3-5 9-1 23-1 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-9 30-3 27-7 24-9 4-1 6-1 6-1 6-1 6-1 7-1 6-1 6-1 6		917-7	568.8	135.8	413-6						-	
ROCK SDLZ FRATHEAD SGLZ FRATHE	-0.1						,	234-1	2. 2.4.		2.42	-,,,,,
ROCK SDLZ FRATHEAD SGLZ FRATHE	YELLOW SOLE	1295.2	155-1	429-6	1.451.5	1364.5	432.5	235.9	152.7	619.2	357.4	298.5
FLATHEAD SOLE ALASKA PLAICE 176.3 7.3 16.3 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
ALASKA PLAICE GREENLAND TST 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		_	_	-								
GREENLAND 191 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												
ARRONTOOTH FL PAC HALISUI PAC	= -	,		_		•						
PAC HALIBUT 8.5 9.3 9.9 90.6 77.9 40.0 44.2 3.6 10.3 5.2 10.2 DTHER FLITISH 4.0 0.0 0.1 11.0 32.0 44.2 10.4 3.5 21.0 65.3 0.9 10.1 FLAT, ISH 2068.1 357.2 639.1 1826.5 1512.1 767.4 501.1 236.2 857.9 735.1 528.2 SKATES 11.2 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.9 0.0 5.0 IOT ELASHOG94 11.2 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.7 0.0 5.0 IOT ELASHOG94 11.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0								-			-	
OTHER FLIFISH 4-0 0.0 0.1 11.0 32.0 44.2 10.4 3.5 21.0 65.3 0.9 TOT FLATFISH 2068.1 357.2 639.1 1826.5 1512.1 767.4 501.1 236.2 857.9 735.1 528.2 SKATES 11.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.9 0.0 5.0 TOT ELASHO994 11.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.9 0.0 5.0 TOT ELASHO994 11.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0						0.ე	. 0.0			0.0	9-0	0-0
TOT FLATFISH 2068.1 357.2 639.1 1826.5 1512.1 767.4 501.1 236.2 857.9 705.1 528.2 SKATES 11.2 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.9 0.0 5.0 TOT ELASHOOPH 11.2 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.9 0.0 5.0 RED KING CRAB 14.3 5.0 18.1 2.7 0.0 0.0 0.0 22.7 6.9 14.9 0.0 5.0 HED KING CRAB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	PAC HALIBUT			9.9	90-6	77.9	40.0	44-8	3-6	10.3	5.2	10-2
SKATES 11.2 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.9 0.0 5.0 TOT ELASMO994 11.2 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.7 0.0 5.0 RED KING CHAB 14.3 5.0 18.1 2.7 0.0 4.8 3.6 14.1 11.1 25.4 5.4 5.4 88.4 80.1 10.0 12.5 6.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OTHER FLIFISH	4.0	0 • 0	0.1	11.0	32.0	44.2	10.4	· 3. 5	21.0	65.3	0.9
SKATES 11.2 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.9 0.0 5.0 TOT ELASMO994 11.2 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.7 0.0 5.0 RED KING CHAB 14.3 5.0 18.1 2.7 0.0 4.8 3.6 14.1 11.1 25.4 5.4 5.4 88.4 80.1 10.0 12.5 6.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TOT FLATFISH	2068.1	357.2	639.1	1826.5	1512-1	767.4	501.1	236.2	857.9	735.1	528.2
TOT ELASMOS 4 11.2 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.7 0.0 5.0 RED KING CHAS 14.3 5.0 18.1 2.7 0.0 4.8 3.6 14.1 111.1 25.4 5.4 BLUE KING CRAB C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0												
TOT ELASMOS 4 11.2 0.0 0.0 0.0 0.0 0.0 0.0 22.7 6.9 14.7 0.0 5.0 RED KING CHAS 14.3 5.0 18.1 2.7 0.0 4.8 3.6 14.1 111.1 25.4 5.4 BLUE KING CRAB C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SKATES	11.2	0.0	0.0	0.0	0-0	0_0	22.7	6-9	14-9	0.0	50
RED KING CHAB 14.3 5.0 18-1 2.7 0.0 4.8 3.6 14.1 111.1 25.4 5.4 5.4 BLUE KING CRAB C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			-									
BLUE KING CRAB C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	121 22.00103 11		•••	, 1,00		3.5	0.0				•••	, ,
BLUE KING CRAB C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	RED KING CHAR	14.3	5-0	18-1	2 - 7	0.0	6.8	7_6	14.1	1111.1	25.4	5 - 6
TANNER, BAIRDI 10.0 12.5 6.4 0.1 0.0 0.0 0.1 1.1 1.3 3.4 2.7 TANNER, OPILIO 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.1 2.5 2.5 TANNER, HYBRID 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	-			_								
TANNER, OPILIO C.O 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 2.5 2.5 IANNER, HYBRID C.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	-				-							
TANNER, HYBRID C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0												
CTHER CRAB 1.3								_				
SNAILS C-0 0-1 4-2 2-8 0-0 1-4 5-0 0-5 2-3 0-3 0-7 SHRIMP C-0 0-0	• • • • • • • • • • • • • • • • • • • •							•				
SHRIMP C-0 0-0 0-0 0-0 0-0 0-0 0-0 0-		1.3										
STARFISH 1.9 0.0 1.4 105.4 93.0 283.7 145.1 11.6 33.9 4.5 2.7 SQUID C.0 0.0<	SNAILS	C - O	0.1	4.2	2.8	0.0	1 - 4	5-0	0.5	2.3	9.3	
SQUID C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SHRIMP	C-0	0.0	0• 0	0.0	0.0	9-1	C- 0	0.0	0.0	0. 0	ე _ n
SQUID C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	STARFISH	1.9	0.0	1 - 4	105.4	93.0	283.7	145.1	11.6	33.9	4.5	2.7
GCTCPUS C.0 0.0	SQUID	0.0	0.0	0.0	1.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0
THER INVERTS 97.0 89.2 111.2 13.1 3.0 2.1 10.9 0.2 17.3 14.1 218.8 TOTAL INVERTS 124.4 106.7 142.9 128.2 97.3 295.6 168.6 27.7 168.8 55.9 235.0 OTHER C.O 0.O 0.O 0.O 0.O 0.O 0.O 0.O 0.O 0.O 0	_											
TOTAL INVERTS 124.4 106.7 142.9 128.2 97.3 295.6 168.6 27.7 168.8 55.9 235.0 OTHER C.O 0.O 0.O 0.O 0.O 0.O 0.O 0.O 0.O 0.O 0												
DTHER C.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-										
	TOTAL TAVERTS	164.4	10004	14647	160.6	71 . 3	= 3 3 4 C	100.0	C . •		3747	U • C C _
	DT HED	r 0	0.0	0.0	0.0	0.0	n n	n n	n n		η η	n n
TOTAL CATCH 3121-5 1032-7 917-8 2368-3 1655-8 1560-8 1026-4 5989-8 1193-2 735-3 1208-3	GIBER	Ç • 1)	0.0	0•0	U = U	. 0.1	V• ()	0-0	U • U	0.9	v. 0	0.0
	TOTAL CATCH	3121-5	1032-7	917-3	2368.3	.1655.8	1560.8	1026.4	5989.8	1193.2	735.3	1209.3

.

9

									- ,		
HAUL #	34	35	36	37	33	39	4.0	4 1	42	43	44
MONTH/DAY/YEAR	6/17/84	6/17/24	6/17/84	6/18/54	6/18/84	6/16/84	6/18/54	6/1 8/84	6/19/54	6/19/34	6/19/84
LATITUDE START	58 19.3	58 39.2	58 59-1	59 19.4	58 58-5	58 40 8	58 20.8	58 C.8	57. 40.6	57 20.6	57 0.6
LONGITUDE START	163 22-4	163 21.1		164 38 0	164 43.0	164 39.4	164 38-3	164 37.5	164 37.8	164 38.9	164 35.7
LATITUDE END	58 20.9	58 40-7	59 C-6	59 19.3	58 56.9	58 39.4	58 19.4	57 59.3	57 39.2	57 19.1	
LONGITUDE END	163 22.7			164 41-2							56 59.2
LCRAN START		163 21.2	,		164 43.5	164 39.3	164 37-8	164 37.8	164 37.1	164 39.1	164 35.1
	33292.70	33123.20	32958-20	32941.10	33147-90	33298-80	33465.50	33621-30	33769.20	33904.30	34014.00
LOHAN START	47357.60	47325.20		47717.20	477 92-90	47906.40	47839.40	47866.50	47895-20	47921-30	47911-90
LCRAN END	33271-90	33111.60		32949.00	33164.70	33308.70	33475-80	33633-40	33775.70	3 3914-50	34 CZO. 20
LORAN END	47 35 8 - 10	47324-10	47297-09	47735.50	47799.50	47804-80	47838.50	47870-70	47891-70	47923-80	47909.70
GEA9 DEPTH	24	18	1 3	12	15	23	. 25	25	30	37	4 0
DURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	C-50	0.50	0.50	0 - 50	0-50	0.50
DISTANCE FISHED	1-47	1-49	1.52	1.51	1.54	1-53	1.51	1.51	1.49	1.57	1.47
PERFORMANCE / GEA?	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
PCLLOCK	71.9	9. 6	2.3	0-0	0-1	0-4	13.8	9.5	115.7	37.6	16.3
PAC COD	118.9	35.4	108.0	141.5	47.2	71.7	36.8	103.0	311.3	10-4	0.2
PAC OC PERCH	C-0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	
OTHER REKFISH	C.O	0.0	0.9	0.0							0.0
SABLEFISH	0.0				0.0	0.0	0.0	0-0	0.0	0.0	0 - 0
		0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0-0	0.0
- PAC HERRING	C-0	0.0	1.1	21-8	0-2	9.6	3.4	0.0	0.0	7 - 1	0-0
ATKA MACKEREL	C-0	0.0	C - 0	0.0	0.0	0.0	c. o	0.0	0.0	ე _ დ	0.0
SCULPINS	59.1	29 .7	39.0	18.3	25.6	16-1	5.7	3. 3	4-6	0.0	0.40
EELPOUTS	0.0	0.0	0.0	0.0	0.0	0.0	C • 0	0.0	0.0	1.4	0 • 5
OTHER RNDFISH	1.6	1.5	1- 9	5.4	1.5	3-0	3.0	0-1	1.5	٠.1	0_1
TOT ROUNDFISH	251.6	75.2	152-3	187.0	74.7	91.8	62-9	115.9	433_1	49.6	17.2
YELLOW SOLE	1100.8	629.1	280.8	437.6	348.9	1560.5	951.7	395-1	1650.0	429 - 1	344.7
ROCK SOLE	214.4	144-2	89.4	19.5	46.3	13-2	29.2	104-8	-50-5	4.5	2.3
FLATHEAD SOLE	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	2.3	3-6	7.3
ALASKA PLAICE	101.0	128.4	3. 2	18.6	97.5	41-0	20.0	56.2		361.5	221-8
GREENLAND THE	C.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	391.5	0.0
ARRONTODTH FL	C.0	0.0	C. 0	0-0							
PAC HALIBUT					0.0	0-0	0.0	0.0	0.0	0.0	0-0
	38.1	4.4	2.4	0.0	2-0	3-4	2.3	25.0	0.0	3.1	0.0
OTHER FLIFISH	11.1	11.8	15.9	6.8	42.6	4.4	1.9	6-8	0.0	0-0	0-0
TCT FLATFISH	1465.4	917.9	391.5	532.5	537.2	1622-4	1005.5	588.0	1940-5	793.€	576-1
SKATES	0.0	0.0	0.0	0.0	0.0	5.1	10.8	0.0	18-4	9.0	0.5
TOT ELASMOBRA	6 - 0	0.0	c • 0	0.0	0.0	5.1	10.8	C- O	18.4	0.0	9.5
REC KING CRAS	10.0	1-1	0.0	0-0	0.0	5.4	10.7	1.8	0.0	0.0	0-0
BLUE KING CRAB	C-0	0.0	0.0	0.0	0.0	0.0	C - 0	0.0	0.0	0.0	0-0
IANNER, BAIRDI	0.0	0.0	. C • O	0.0	(ن 🕳 0	0.0	0.0	0.0	0.5	0.0	0.1
TANNER, OPILIO	0.0	0.0	0.0	0.0	0.1	0.0	C. 0	0.5	1.1	15.4	6-4
TANNER, HYBRID	0.0	9.0	0.0	0-0	0.0	0.0	c.o	0.0	0.0	0.0	0.0
OTHER CRAB	3.9	7.0	1.5	5.5	10.6	5.3	13.6	15.6	111.4	29-1	3.1
SNATLS	G - 4	0.1	0.0	0.0	0.1	3. 8	19.2	41.9	32.1	7.5	
SHR I MP	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0		22-2
STARFISH	103.7	154.7	40.1	41-3						7.1	0 - 1
SCUID		0.0	0.0		97.5	78-3	224.1	76-7	2.9	19-5	3 - 3
	C - O			0-0	0-3	0.0	C-0	0.0	0.0	0.0	0.0
OCTOPUS	0-0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	_0. c	0.0
OTHER INVERTS	4.4	19.7	1.0	0.6	1.0	1.0	14.3	35.4	74.0	50.1	13.7
TOTAL INVERTS	122.4	173.7	42.7	47.4	109-3	93.7	282.3	171-9	221.5	117.7	4 A . 7
OTHER	0.0	0.0	0.0	0.0	0.9	0 - D	c- o	c* o	0.0	0.0	0-0
TOTAL CATCH	1839.4	1166.7	586.6	766-9	721.2	1813-1	1361.3	875.8	2513.8	957.1	642.5
			,								

Table A-1.--Station and catch data for the NOAA ship Chapman (cont'd).

							-				
HAUL #	5 6	57	58	59	69	6 1	6.2	6.3	64	65	65
_MONTH/DAY/YEAR	5/22/34	6/22/84	6/22/84	6/23/64	6/23/84	6/23/84	6/23/84	6/24/84	6/24/84	6/29/84	6/29/84
LATITUDE START	56 41-2	56 59.9	57 2C.6	57 39.9	57 59.4	58 19.5	58 39.8	53 59.8	59 19.1	54 58.9	55 19.2
LONGITUDE STAFT	165 51.3	165 50.4	165 52.3	165 51.9	165 54-0	165 56.3	165 57.3		165 57.5	166 56.7	166 58.7
LATITUDE END	56 42.7	56 58.6	57 19-2	57 41.4	58 0.6	58 21-1	58 40.8	59 0.7	59 20.6	55 0.3	55 29.5
LCNGITUDE END	165 51-2	165 49.1	165 51.5	165 52-1	165 55.4	165 56.8	165 59.5	165 57-1		166 55.8	166 58.7
LORAN START	34348.20	34243.30	34129.50	33994.50	33851.30	33687-30	33505.00	33306.00	33115.10	18233-40	
LORAN START	48421.40	48413.50	48411.30		4 93 63 - 30	48331.60	48283-90	4921 2.20			19332.60
									4 61 65 . 20	48678.30	48737.60
LORAN END	34340-80	34250.90	34136-40	339 84.20	33845.10	33674-90	33500,60	33301.70	33100.90	18241-60	18338.70
LORAN END	49421.30	48404.70	48405.30	48383-70	48369-40		48293.60	48220-60	48162-90	48676-50	48740.60
GEAR DEPTH	44	4 1	3 9	37	3.2	25	21	1.8	14	85	79
DURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	1.53	1.49	1-46	1.55	1 - 47	1-51	1.52	1.35	1.51	1-61	1.35
PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
PCLLOCK	1229-3	9.5	73.0	34.9	91-2	29.0	5.4	0-0	1 - 4	481.0	966 - 4
PAC COD	28.8	21.3	27.7	68.9	35.5	11.3	68.0	62-1	169.2	18.6	37.9
PAC UC PERCH	· C • O	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0 . C	0-0
OTHER RCKFISH	C-0	0.0	C- 0	0.0	0-3	0.0	0.0	0.0	0.0	7.0	0-0
SABLEF ISH	0.0	0.0	0.0	0-0	0.0	0-0	0.0	C_ 0	0.0	13.6	0-0
PAC HERRING	0.0-	0.0	0.0	0.1	0.0	0.1	0.1	0.0	24.0	0.0	3-0
ATKA MACKEREL	0.0	0.0	c. 0	0-0	0.0	0.0	C. 0	0.0	0.0	0.0	0.0
	7.2		0-0								
SCULPINS		0.0		1 - 4	1-1	0.9	8.3	31-3	32.5	2-1	0-1
EELPOUTS	C • 1	0.1	0.0	0.0	0.0	0.0	C.0	0.0	0.0	9 • 7	2.0
OTHER RNDFISH	C - 1	0.1	. 0-1	0.2	0.6.	0.2	1-8	. G. 5	5.9	1 - 2	29-1
TOT ROUNDFISH	1265-2	31.0	100.8	105.6	128-4	41.6	83.6	93.7	232-9	517.2	1034.6
WELLOW 60: 5											
YELLOW SOLE	153.9	137.8	427.7	515.7	659.2	167.9	312.1	176.0	207.3	0.0	0-0
ROCK SOLE	28.3	0.7	9.5	21 • 3	30-7	9.5	23.6	45.8	39. 5	0-0	0 - 7
FLATHEAD SOLE	18.8	4- 1	3.9	27.2	3 - 4	0-1	0-1	.0.0	. 0.0	7320	45-1
ALASKA PLAICE	12.7	91.2	94.3	401.9	191-2	4.5	35.8	69.9	63.0	0.0	0-0
GREENLAND 191	C = 0	0.0	C-0	0.0	0.0	2.0	C. 0	0.0	0.0	0.0	2.3
ARROWIDSTH FL	C = 0	0.0	0.0	. 0.0	0.9	0.0	0.0	Ç- 0	0.0	47.4	47.4
PAC HALIBUT	0-0	0.0	0.0	0.0	0.0	15.6	11.4	9.1	19.4	0-0	7.0
OTHER FLIFISH	č.0	0.0	0.0	0.0	1.7	4.3	9.1	17-7	30.8	24.3	26.5
TOT FLATFISH	.213.8	233.7	535.5	966-1	885-5	221.9	39 2. 0	318-4	360-9	144.7	129.8
ict realition	., 12.60	E 3 3 6 4	33383	23021	0.3.2.3	22147	39 2 8 0	31644	300.	1174.	1.720
SKATES	17.2	0.0	5.2	7.3	33-3	9-1	20.0	0.0	0.0	7.1	28.1
TOT ELASMOER4	17-2	0.0	5.2	7-3	33.3	9.1	20.0	0.0	0.0	7.1	28.1
101 221 311 2 111					•			• • •		· · -	-
RED KING CRAS	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0-0	0.0	0.0	0.9
ALUE KING CRAS	0.0	0.0	C-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANNER - BAIRDI	13.4	0.5	0.1	0.7	0-7	0.0	0.0	0.0	0.0	. 9.6	3.3
TANNER, OPILIO	7.4	25.5	112-0	46.7	8-3	0.1	0.0	0.0	0.0	2.5	2.3
	_	0.0						C-0	0.0	2 .7	0.0
TANNER, HYBRID	(-0		0.0	0-0	0.0	0.0	0.0				
OTHEK CRAB	3.5	8.6	6-8	72-4	187-0	20-0	5.5	5.3	2.4	0 - 9	0.5
SNAILS	45.5	14.5	24.6	71-7	147-0	18, 1	4.7	0.3	0-1	3 • 1	1.6
SHRIMP	0.2	0.0	0.0	0.9	0-1	0.0	0.1	0-1	0.5	3 - 6	9.0
STARFISH	47-6	12-1	14.2	41-1	21-1	10-2	127.2	6-8	4-5	9 - 6	0-1
SOUID	C - O	0.0	C • O	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0
OCTCPUS	0.0	0.0	0.0	0 - 0	0 - 0	0.0	0.0	0-0	0.0	0.0	0-0
CTHER INVERTS	10.0	9. t	17.2	31-2	132.3	11.3	0.9	0-1	0.8	31.3	16.1
TOTAL INVERTS	123.6	70.4	175.1	263.2	546.4	59.8	136.5	12.6	7.9	47.2	23.6
-							•				
CTHER	0.0	0.0	0.0	0.0	0.0	0.0	C • 0	0.0	0-0	0.0	0 - ว
ICTAL CATCH	1619.7	385.1	816.5	1342-1	1593-7	332.3	534-1	424-7	500-3	715.3	1216.1
TOTAL GATOR	101741	JU) = 1	C10. J	1 246 - 1	L 272=1	736.3	33447	7 6741	-9 U U = 3	. E	

100

9

											_		
	HAUL #	73	79	80	81	92	83	3 4	85	86	37	89	
	MONTH/DAY/YEA®	7/ 1/84	7/ 2/84	7/ 2/84	7/ 2/84	7/ 2/84	7/ 2/84	7/ 3/34	7/ 3/84	7/ 3/84	7/ 3/84	7/3/84	
	LATITUDE START	59 19-2	60 19.6	59 59.6	59 40-3	59 2C.7	59 0.7	58 4C.4	58 20-7	58 0.5	57 50.2	•	
	LENGITUDE STAFT	157 16.5	168 40.1	16a 39.3	169 37.3	168 34.5	168 32.5	168 30.3				57 41.1	
	LATITUDE SCUTITAL	59 20.7							168 27.2	168 25.0	168 39 9	168 22.7	
	LONGITUDE END		60 19.5	59 58-1	59 39 3	59 19.2	58 59.3	58 39.0	58 19.4	57 59.2	57 49.C	57 40.2	
		167 17.4	168 43.4	168 38.8	158 37.1	158 34.1	168 32.2	168 29.5	168 28-2	168 26-2	168 41.4	168 24.8	
	LORAN START	33230.00	327 C4 • 50	32945.90	33163.90	33404-40	33636.70	33867.70	34081-30	34299-90	344 35.20	34459.70	
	LORAN START	49593-30	48677.70	48770.90	48855.49	48945.20	49039-20	49133-30	49216.00	49297-10	494 28.9C	49355.80	
	LORAN END	33265.00	32710.50	32963.30	33186.50	33421.20	33653-40	33892.30	34098.70	34306.20	34452.40	34484.60	
	LORAN END	48581-40	48590-90	48776-20	48862.20	48951.00	49045.50	49136-60	49228.00	49309-60	49442.60	49375.20	
	GEAR DEPTH	19	2 1	22	23	25	26	30	37	40	40	40	
	DURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50		· · · · · · · · · · · · · · · · · · ·	
	DISTANCE FISHED	1.53	1.52	1.55	1.53	1.57	1.51	1.50	1.51		0-50	0.50	
	PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37				1-45	1.48	1-49	
	Law owner Lagran	0 , 3,	0 7 31	0 7 37	0 7 31	0 / 31	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	
	POŁLOCK	14-1	53.8	71.0	27.9	42.5	35.6	51.6	5.9	76.9	7.0	27 2	
	PAC COD	104.1	100.7	127.2	68.7	78.3						27.2	
	PAC OC PERCH	0.0		0.0			74.8	51-1	7-9	52.2	2.9	13.6	
			0-0		0.0	0.9	0.0	0.0	C-0	ū*0	0.0	0-0	
•	OTHER ROKFISH	C.O	0.0	0.0	0.0	0.0	0.0	C • C	0.0	0.0	0.0	. 0.0	
	SABLEFISH	C - O	0.0	C-0	0.0	0.)	0.0	0.0	0.0	0.0	0.0	0-0	
	PAC HERRING	0.2	0.2	8•2	9-1	10.5	0.5	0.0	0 - 0	0.0	0.0	0.0	
	ATKA MACKEREL	0.0	0.0	0• 0	0.0	0.0	0.0	C-0	C - O	0.0	0.0	0.0	
	SCULPINS	25.1	26.5	32-4	13.5	15.5	5.7	1.5	4-3	12.0	1-1	4.2	
	EELPOUTS	C - O	0.0	C. 0	0.0	0.0	0.0	0.0	0.2	0.0	0.5	0.0	
	OTHER RNDFISH	30.7	0.7	1-0	0.3	0.5	2.3	C_ 4	0-1	0-1	0.3	0.3	
	TOT ROUNCEISH	174.2	151.9	239.8	110-4	147.5	119.0	104.5	18.5	141.2	11.9		
		14 .42	1010	2.37.0	11044	141.07	117.0	10445	10.3	14142	11	45.3	
	YELLOW SOLE	498.9	263.3	335.0	327.0	400.0	379.3	752.4	2 2 2 2 0	613.7	323-6	270.1	
	RCCK SOLE	17.0	5.0	13.8	38.8	76.7	27.2	17.5	0.5	4.3	12.7	52.6	
	FLATHEAD SOLE	. 0.0	0.0	C. 0	0.0	0.0	0.0	0.4	1. 6	5.2	8.6	14.1	
	ALASKA PLAICE	33-9	24.6	123.4	119.3	310.4	200-0	120.7	38.8	5 4 - 9	60.3		
	GREENLAND TRE	0.0	0.0	0.0	0.0	0.0	0.0	C- 0				52.2	
	ARRONTOOTH FL	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
	PAC HALIBUT				0.0	0.0	0.0	0.0	0-0	0-0	0.0	0-1	
		26-1	0.0	1.3	1 - 3	2.5	0.0	0.0	2-0	0.0	1 - 4	5.0	
	OTHER FLIFISH	1-2	5. 3	3.2	4-4	4.9	2.6	4_0	2.9	0.0	. 0-0	0.0	
	TOT FLATFISH	577.0	35 3 2	476.6	490.8	794.5	608-2	895.¢	267.8	679.1	406.7	394-1	
	SKATES	19.1	0.0	0.0	0.0	17.5	0.0	7.3	11.3	0.0	0.7	ε.	
	TOT ELASHOBRE	18.1	0.0	0.0	0.0	17.5	0-0	7.3	11.3	0.0	0 • 7 2_ 7	5-4 5-4	
			V •.	0. 7	Ų .	1147	9.0	, , ,	11.	0.0	7. 4	J • 4	
	RED KING CRAS	C.O	0.7	C. 0	0.0	0.3	1.6	. 0.0	0.0	0.0	0.0	2.3	
	BLUE KING CRAS	C • O	0.0	C - 9	0.0	0.0	0.0	C. 0	0 = 0	0.0	3.4	4.5	
	TANNER, BAIRDI	0.0	0.0	0.0	0.0	0.0	0.0	C- 0	0.0	0.0	0.0	0.8	
	TANNER, OPILIO	0.0	0.2	0.0	0-0	C.3	0.3	5.3	24-4	4C.5	46.6	14-2	
	TANKER - HYBRID	0.0	0.0	0.0	0.0	0.1	0.0	0.0	1-4	1.0	2.7		
	OTHER CRAB	1-1	13.9	20.5	10-9	23.3		55.2			,	1-4	
	SNAILS	2.2	5.8				14.6		26.0	28.2	25.4	27.6	
	SHRIMP			11.4	11.1	28.1	34.4	46.8	28.0	12.1	16.4	171-6	
		C-0	0.1	0.0	0-1	0 • ?	0.0	0.2	0.0	0.0	7-1	0-9	
	STARFI SH	98.9	33.1	142.4	115-2	72.6	117-6	98.0	22.9	14.2	19.8	151-1	
	SCUID	C. 0	0, 0	0.0	0.0	0.3	0-0	C • 0	0-0	0.0	0 - 0	0-0	
	OCTOPUS	0-0	0.0	0.0	0.0	0.3	0 - 0	0-0	0.0	0.0	7. 0	0.0	
	OTHER INVERTS	2-9	11.9	7.4	53	10.2	9.7	47-7	16-1	51.7	101.4	223.5	
	TOTAL INVERTS	105-1	65.6	181.7	142.6	134.5	178.2	253.2	118.8	147-7	21 9.7	6.76.9	
	CTFER	C • 0	9.0	C - 0	^ ^	0.0		• •		• •	2.5		
	W11 C ()	C • U	9.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	TOTAL CATCH	874-5	605.7	898.2	743.8	1094-1	905-3	1260.1	416-3	965.9	638.0	1051.7	

ø

99

Table A-1.--Station and catch data for the NOAA ship Chapman (cont'd).

								•			
HAUL #	100	101	192	103	104	105	105	107	103	109	110
MONTHIDAYIYEAR	7/ 7/84	7/ 7/24	7/ 7/84	7/ 8/84	7/ 8/34	7/ 8/34	7/ 8/84	7/ 8/84	7/ 9/84	7/ 9/94	7/ 9/84
LATITUDE START	57 9.0	57 19.7	57 30.1	57 39.7	57 49.5	57 59.9	58 20.1	58 40-1	59 0-1	59 13-7	59 39.6
LONGITUDE START	169 53.8	169 37.1	169 58.3	169 38.3	170 0.3	169 41-2	169 42.8	169 46.6	169 49.9	159 53.3	159 55.4
LATITUDE END	57 10-4	57 20.8	57 30.6	57 40.4	57 49-3	57 59.8	58 20.5	58 40.3	58 59.7	59 20.6	59 40-6
LONGITUDE END	169 53.0	169 35.2	170 0.8	169 40.6	170 3-5	169 44-0	169 45.4	169 49.4	169 52.6	169 55.6	169 57.7
LORAN START	18747-10	34910-70	34859.70	34706.20	18622-00	34475.50	18548-60	33996-00	33754-90	18312-80	19242-40
LORAN START	50038.50	49901-70	49965-30	49808-49	49847.53	45698-70	49579-50	49470.90	45362-70	49260.3C	49155.00
LCRAN END	18749.20	34893.90	34858.00	34702-90	18616-10	34482.00	18541-10	33996.70	33762.00	18304.30	1 92 33 - 40
LORAN END	50031.50	49885-69	49973.20	49815.40	49859.30	49712.00	49587.50	49480.10	49374.50	4 92 63 . 20	49157.50
GFAR DEPTH	27	36	39	40	41	40	39	38	35	35	32
DURATION IN HOURS	0.50	0-50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	1.53			4	1-42		1.50	1-49	1-51	1.50	1.52
DISTANCE FISHED		1.52	1-45	1.45		1.52					
PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
POLLOCK	C-0	29.4	20.9	11.3	23-1	ē.2	29.5	98.0	108.5	243.5	19.2
		35.3			53.9			137-2	129.0	419.3	125.4
PAC COD	77-1		29.5	6.0		20-4	51-9				
PAC OC PERCH	0.0	0.0	0.0	0.0	0.7	0-0	0.0	0-0	0.0	9.0	0.0
OTHER ROKFISH	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AC HERRING	, C • O,	0.0	0-0	0.0	0.3	0.1	0-2	0.5	0.3	0.3	1.1
ATKA MACKEREL	C - 0	0.0	C = 0	0.0	0.0	0-0	0.0	0.0	0.0	0 • 0	0.0
SCULPINS	13.5	79.1	50.0	90-0	36.7	55.8	19.1	6-0	11.1	3.9	74.7
CELPOUTS	C - 0	0.0	0.0	0-0	C-1	0.0	€.4	14.3	14.8	4.7	46.4
CTHER RNDFISH	C - 4	0.5	C. 2	5.8	0.0	0-4	0.5	0.1	0.3	1.0	1-1
OT ROUNDFISH	90-9	135. 3	110-6	113.2	143-0	84 - 8	107-5	256-2	264.9	672.7	268.0
'ELLOW SOLE	5.5	756.2	120 7	177 6	320.9	319.3		4 0 0 2	702.6	544.5	315.4
			180.3	477.5			692-4	499.2			
CCK SOLE	485.5	305.2	119.7	13.3	46.5	5.7	2.9	5.4	5.3	5-8	1.3
LATHEAD SOLE	C-0	4.6	7.0	2.0	4 • 1	2.7	3.2	10.0	3.3	1.3	0.0
LASKA PLAICE	C.O	132.0	33.7	303.5	368.3	175-4	25 8 • 3	74-8	465.5	419-3	442.9
REENLAND TBT	C-0	0.0	0.0	0.0	0-5	0-0	0.0	0.0	0.0	0.0	0.9
RRCWTOOTH FEL	C-1	6. 3	0.9	0.0	. 0.7	0.0	0.0	0.0	0-0	0.0	0.0
AC HALIBUT	64.0	0.0	0.0	0.0	1-1	0-0	C-0	0-0	5.4	0-0	0.0
THER FLIFISA	C•0	0.0	0.0	0.0	0.0	0.0	G - O	C- 0	9.8	5 -1 ,	
GT FLATFISH	555 - I	1204.5	391-7	795.4	741-9	504-2	956.8	5 8 9 - 4	1192.4	977-0	751.7
(A TES	0.0	0. 0	8.2	1.7	19.5	2.9	e. 2	13-1	2.9	0.0	0-0
OT ELASMOBRA	C-0	0.0	8-2	1.7	19.5	2.9	8.2	16-1	2.9	0, 0	0.0
	•										
ID KING CRAB	7.0	1.5	7- 3	0.0	0.0	0-0	0.0	0-0	0.0	0 - 0	6-6
LUE KING CRAB	26.3	23.6	7.6	1-1	11-3	0.0	0.0	C-0	0.0	0.0	0.0
NNER, BAIRDI	c - o	2.2	7-1	0.1	0 - 0	0-0	C- 0	0.0	0.0	0.0	0.0
NNER, OPILIO	0-2	28.7	99.3	168.1	94.3	71.7	5 4. 4	57.8	15.6	21.5	39.8
NNER, HYBRID	0.0	0.1	0.1	0.0	0.0	9-1	0.0	0.0	0.0	0.0	0.0
HER CRAS	30.3	53.7	48.2	71.8	98-3	128.0	12-1	40-0	90.7	51-0	47.7
A ILS	0.5	0_1	1.9	0-0	13.2	72.3	22.3	14.7	61.2	73.2	193.4
RIMP	0.0	0.0	0 • 0	0.0	0.0	0 • 0	C- 0	0-1	0.0	0.0	0.0
ARFISH	186.4	369.3	51.9	67.4	91.2	E 9 - 4	14.4	21.0	18.9	3.5	51.2
UID	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0
TOPUS	0.0	0.0	0.0	0.9	0.9	0.0	0.0	0.0	0.0	0.0	0.0
HER INVERTS	11.9	1340.3	509.0	21.9	16.7	15.8	5.8	6.5	67.6	63.C	87.9
TAL INVERTS	262.8	1819.4	732.4	326.4	325.5	376.2	109.0	140-1	254-1	212-3	329.5
LEE THACKLY	20240	1017.4	1544	3_0 - 4	36341	71000	10780	14041	-> 7 7 8 1		10,767
IER	0.0	0.0	0.0	0.0	0.9	0- 0	C. 0	0 • 6	0.0	0.0	0.0
TAL CATCH	908.9	3159.6	1242.8	1237.7	1229.9	968-2	1181.5	1 00 3- 9	1713.3	1862-1	1359.2

Table A-1--Station and catch data for the NOAA ship Chapman (cont'd).

									•		
HAUL #	111	112	113	114	115	116	117	11 8	119	120	121
MONTH/DAY/YEAR	7/ 9/34	7/ 9/84	7/10/84	7/10/34	7/10/84	7/11/84	7/11/84	7/11/84	7/12/84	7/12/84	7/12/84
LATITUDE START	59 59.2	60 19.7	60 39.1	53 39.7	60 39.5	60 59-1					
LONGITUDE START							60 59.9	51 0-8	60 19-4	60 0-5	59 47.6
	169 57.3	170 0.6	171 24.6	172 6.3	172 42-4	172 48-8	172 10-1	171 26-4	171 22-1	171 17-1	171 15.3
LATITUDE END	50 0.2	60 21.2	60 40-5	60 41.0	60 40.9	61 0.5	60 58.4	60 59- 5	60 20.8	59 59-1	59 39-1
LONGITUDE END	169 59.2	170 0.4	171 24.9	172 7.6	172 43-4	172 48.6	172 10.4	171 27-6	171 21.6	171 15.3	171 15.1
LORAN START	19176.20	18105-40	17821.70	17689-90	17569.30	17511.70	17634-90	17764-50	17879.60	17944.20	18005.00
LORAN START	49054.70	48958-40	49093.50	49185.80	49261.77	49176.90	32404-20	32365-50	32853-20	33076.00	33313.70
LORAN END	19168-30	18102.60	17817-40	17582.70	17563.20	17510-10	17637-30	17764.00	_	_	
LORAN END	49055.70	48950.00	49057-10	49183.00					17876-70	17950.40	18009.50
GEAR DEPTH					49256.87	49171-50	32421_80	32381.50	32836.50	33092.70	33331.2C
-	31	30	36	35	27	38	36	36	33	4 1)	41
DURATION IN HOURS	0-50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	n.50
DISTANCE FISHED	1.40	1-45	1.45	1-47	1.50	1.53	1.51	1.45	1-44	1 - 49	1.52
PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
									V • 5.	• . • .	J . J.
POLLOCK	0.0	0.1	0.1	0.1	2.3	0.0	0.0	0.3	0.1	0.4	
PAC COD	26.5	2.7	0.1	0.0	0-2				• -	9 - 1	0 - 1
						9.0	0.0	0-0	0-0	0-1	2 - 8
PAC OC PERCH	C.0	0.0	0.0	0.0	0.0	0.0	0.0	0~0	0.0	0.0	0.0
OTHER ROKFISH	. C-0	0.0	0.0	-0.0	0.0	0.0	C. 0	0-0	0.0	0.0	0-0
SABLEFISH	C-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	ŏ.ò
PAC HERRING	C.3	0.0	0.1	0-1	0-1	0-0	9.1	0-1	0-1	0.2	0.7
ATKA HACKEREL	0.0	0.0	0.0	0.0	0-0	0-0	0.0	0.0	0.0	0.0	0.0
SCULPINS	55.9	36.3	18.5	20.0	566.4	35.0					
EELPOUTS	54.8						10.5	7.9	34.9	35-2	13.6
		3.1	5.0	9-2	0-3	2-5	0.9	1-6	28.1	21-3	20.2
OTHER RNDFISH	1.5	1.7	9 - 3	0 - 3	0.3	ع ۵۰	0.4	1.5	1-4	3, 3	3.9
TOT ROUNDFISH	149.0	43.9	24.1	28.6	569.3	38.3	11.9	11-4	64.5	60.1	41.3
YELLOW SOLE	586.1	74.8	2-7	1.5	1 - 4	0.0	0.2	2. 3	26-8	57.2	30-4
ROCK SOLE	0.0	0-1	C-1	0.0	0.1	0.0	0.0	0.0	0.1	0.1	0.4
FLATHEAD SCLE	0.0	0.0	0.0	0.0	2.9	0-2	C. 0	0-0	_		
ALASKA PLAICE	2954.2	179.6	20.2	5.0					0.0	0-0	0.9
		_		_	496.0	4.9	11-1	12.5	30-8	30 - 4	188.1
GREENLAND THE	C-0	0.0	0.0	0-0	0.0	0.0	0.0	0-0	0.0	9. O	0.0
ARROWTOOTH FL	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0_0	0.0	0.0
PAC HALIBUT	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0-0
OTHER FLTFISH	7.3	1.6	0.9	0.5	31.4	1-8	0.7	1.3	1.5	3-5	4-4
TOT FLATFISH	35 47 . 7	256- 2	23.9	6.9	528.9	6.8	12.0	16-0	59.2	91-1	
	, ••	2,00-	234,	0.,)C0 = /	0.0	12.0	1020	J J • i	71-1	274-2
- SKATES	0.0	0.0	0.0	0.0	4.5	0.0					
TOT ELASMORRH			-			0-0	0.0	0.0	0-0	3.4	0 - 0
TOT ELASHUE M	6.0	0.0	0.0	0.0	4.5	0.0	C- 0	0.0	0-0	3-4	0 - 0
DEB KANG GOOD	_	_									
RED KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0-0	0.0	0.0	0.0
BLUE KING CRAB	0.0	0.0	0.0	0.0	0.7	0.0	C- 0	0-0	0.0	0 - C	9. 9
ICRIAG RANNAT	C-0	0.0	0.0	0.9	0-1	0.0	0.0	0-0	0.0	0_0	0.0
TANNER. DPILIO	27.9	33.6	124.7	89-4	4.2	252.5	171.0	81.4	53.3	220.1	113.2
TANNER, HYBRID	C.0	0.0	0.0	0.0	0.0	0.0	0-0	0-0			
OTHER CRAB	105.4	56.8	C- 8	1-1					0-0	0.0	0-0
SNAILS					745	1-0	2.0	2 - 6	4-0	17.2	3.1
	159-8	116.3	0.4	0-6	6-2	0-2	0.6	1-9	43.0	31-8	19.3
SHRIMP	C-0	0.0	. 0.2	0-2	0-0	0-1	0.2	0 - 3	0.2	0.0	0 - 1
STARFI SH	64.8	59.9	25.4	5 7. 6	17.5	7.7	70.9	24.9	21-5	25.3	32-0
SOUID	C.O	0.0	0-0	0.0	0.0	0.0	0.0	0_0	0.0	0.0	0.0
OCTOPUS	0.0	0.0	0.0	0.0	0.0	0.0	C.0	C+0	0.0	0.0	0.0
OTHER INVERTS	116.0	22.2	2.5	2-1	6.5	1.3		3-6	5.5		
TOTAL INVERTS	474.0	288.7	154.1	151-1	42.7	262-8				5. 2	6.7
TOTHE ENVENTE	7,760	200.1	17401	171-1	46.1	· 204=0	250.0	114-8	127.5	300 - €	174.6
GTHER	0.0	0.0	0-0	^ ^						<u> </u>	_
GINCK	u • 0	0.0	0.0	0-0	. 0.0	0.0	C-0	0-0	0.0	0.0	0.0
TOTAL CATCH	417A T	E00 -	200 -	407 -				<u> </u>			
TOTAL CATCH -	4170.7	58 5. 7	202-1	186.6	1145-4	307.9	274.0	142-2	251.2	455. T	4)0-0

Table A-1.--Station and catch data for the NOAA ship Chapman (cont'd).

				•							
THAUL #	122	123	124	125	125	127	128	129	139	131	1 3?
RPSYLVAGINTHOM	7/12/84	7/12/84	7/13/86	7/13/84	7/13/84	7/13/84	7/13/84	7/14/84	7/14/84	7/14/84	7/15/84
LATITUDE START	59 20.5	59 1-0	58 4C.4	58 20-7	58 C-7	57 40.6	57 20.7	56 59.6	56 40.6	56 20.8	56 0.1
LONGITUDE START	171 11.5	171 8.2	171 5.2	171 1.0	170 59.2	170 54.4	170 52-2	170 46-2	170 44.2	170 41.5	158 13.1
LATITUDE END	59 19.0	58 59.5	58 38.9	58 19.2	57 59.2		_				
3	171 11.7	•			•	57 39-1	57 19-4	56 58.1	56 39.2	56 19.2	55 58.6
LONGITUDE END	-	171 8.2	171 4-9	171 0-4	170 58.0	170 54 3	170 52-1	170 46.6	170 43.5	170 41.5	158 13.3
LCAAN START	18075.20	14145.60	19220-40	18299.30	18375-90	18455-40	12510-70	19511-10	18402.00	18269-60	18463.70
LORAN START	49475-30	33786.10	34031.30	34266.80	34503.40	34737-30	34947-10	35794-70	35127.20	50015-60	49268 <u>-</u> 60
LCRAN END	18078.90	18150.10	18226.30	18307.40	18381.70	18450.60	18511-90	18501-20	18395.50	18258.00	18455.50
LORAN END	49494-10	33803.20	34049.60	34285.00	34521.00	34754-10	34959-40	35097-90	35129.70	50009-00	49265.90
GEAR DEPTH	4.3	44	47	4.8	43	4.8	47	54	54	68	94
DURATION IN ADUPS	0.59	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	1.47	1.51	1.57	1.58	1.50	1.52	1-46	1.50	1-44	1-51	1-47
PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	j / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
Tem ontighte Franch	0 / 3	V / 31	0 , 3,	J / 31	0 7 37	0 / 37	0 7 31	0 / 3/	0 / 3/	0 / 3/	0 7 37
PCLLOrK	3.2	5.2		1071 6	777 .			20.6			5:0.0
			61.5	1074.6	337.0	12.2	15.4	28.6	109.3	0.0	502.8
PAC COD	12.2	24.5	143.1	55• 3	87.3	38-3	65.5	47-4	43-3	155.6	126.3
PAC OC PERCH	C • 0	0.0	0.0	0.0	0.0	0.0	C - 0	C - 0	0.0	0-0	0.0
OTHER RCKFISH	0.0	0.0	0.0	0.0	. 0 -0	9. 0	0.0	0.0	0.0	0_0	0-0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0-0	0.0	C. 0	0.0	0.0	2.5
PAC HERRING	0.8	0.1	C. 0	0-4	0.0	0.0	0.0	0_0	0-0	9.0	0 - 0
ATKA NACKEREL	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0-0	0.0	0.0	0-9
SCULPINS	28.6	21.4	18.6	11.5	18.4	41.5	148.0	22.0	26.2	14.4	2.4
EELPOUTS	21.1	19.1	8.5	0.0	0.2	0.1					
							0.2	0.1	1-6	2-1	0-6
OTHER ANDFISH	0.7	9.9	0.2	0.0	0-1	0 • 1	1-7	22.7	7.8	1.0	0-1
TOT ROUNDFISH	66.6	71.2	237.0	1142.2	443-4	92.3	230.9	120.8	188.7	171-1	634.5
								,		•	
YELLOW SOLE	107.5	66.0	101.6	97.4	312.5	285-1	20.9	0.5	0-0	0.0	0.0
ROCK SOLE .	0.2	0.2	g. 7	22.0	33.9	21.3	81.0	11-1	3.4	0-0	26.3
FLAIHEAD SCLE	1-1	6 • 8	1.2	1.3	37.2	44.5	18.1	44.9	60.1	59.€	65 • 5
ALASKA PLAICE	124.7	92.5	54.2	157.4	29.0	40-1	15. C	6.8	0.6	0.0	ີ້ ບໍ•າ
GREENLAND TST.	0.0	0.0	3.6	3.2	3.5	0.0	0.0	0-0	0.0	0.0	0-0
ARRONTOOTH FL	0.0		0.0	0 - 0.	17-7	20.0	15-6	14.1	39.5	7 9.9	34-1
PAC HALIBUT	č.ŏ.		10.6	9.4	2.2	9.8		0.0	6.2		-
CTHER FLIFISH	6.1	0.0		3.2			7-1			74.4	1-5
			4-1		0.0	0.0	0-7	8.0	4.3	9-1	0.7
TOT FLATFISH	239.7	160.3	186.0	303.4	436.3	419.8	158-4	78-2	116.0	223.0	178.2
A											
SKATES	C-0	0-0	· 8.6	3.7	36-5	29 .9	51.9	34.5	63-1	37.8	136.5
TOT ELASHOBRA	C-0	0.0	8.5	9.7	36.5	29.9	51.9	34.5	63-1	37_8	136.5
							•				
RED KING CRAB	C-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BLUE KING CRAP	C.0	0-0	C. C	5.4	0.3	9.3	C. 0	0.0	0.0	0.0	0.0
TANNER - BAIRDI	0.0	0.0	0.0	0_0	2.9	0.9	1 - 9	2.7	6.1	3.0	1.5
TANNER, OPILIC	74.2	21 8. 9	101.8	17.7	37.4	45.4	154.6	28-1	14.1	0.2	2.0
TANNER, HYBRID	C-0	0.0	C. 0	0.0	0.0	0.0	0.0	0-0	1-4		
CTHER CRAR	3.9	5.9	4.0							0-1	0.9
,, ,				14-4	31.6	39.2	4 - 3	8.6	17.2	11.2	7.6
SNAILS	61.9	121-4	25.8	29.8	37-2	489.7	301-4	48.0	12.2	11.7	1 - 2
SHRIMP	C • 1	0.1	0-3	0.0	9-1	0.0	0.0	0.2	9.1	o. e	0 - 1
STARFISH	22.2	5 8 - 0	25.1	225.5	17.9	14 - 1	82-0	3.6	72.6	427.2	4.7
SOUID	0.0	0-0	0.0	0.0	0.0	0.0	0.0	Ç. 0	0.0	0.0	0-0
CCTOPUS	6 - 0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
OTHER INVERTS	17.8	6.9	0-7	9-8	5.7	. 7.6	112-9	9-4	3-9	15.2	73-1
IDTAL INVERTS	179.9	381.2	157.4	223.7	132-1	606-1	656.9	100.8	127.5	474.6	41-1
	• •						0,000	10040	12.00		
OTHER	C - 0	0.0	C. 0	0.0	0.0	0-0	0.0	C-0	0.0	0.0	0-0
		230		~ • •	•••			5.0		3.0	0 0 • 7
TOTAL CATCH	- 486.3	612.6	589.0	1749.0	1048-3	1148-1	1098.1	3 34. 2	495.4	905.5	920.5

			•								
AUL #	133	134	135	136	137	138	139	140	141	142	143
ICNTH/DAY/YEAR	7/15/84	7/21/84	7/21/84	7/21/84	7/21/84	7/21/84	7/22/84	7/22/34	7/22/84	7/22/84	7/22/84
_ATITUDE START	55 40.6	56 39 8	56 59.5	57 20.0	57 35.6	57 59.2	53 20.3	58 39-7	58 59-4	59 19.5	59 ?9.4
_ONGITUDE START	153 11.1	171 59.1	172 1.5	172 6.5	172 10.3	172 12.4	172 16.4	172 22.5	172 27.9	172 30.2	172 48.0
_ATITUDE END	55 39.1	56 40.0	57 0-3	57 20.8	57 40.3	57 59.6	58 20-2	58 41.2	59 1.0	59 20.4	59 30.9
_ONGITUDE EN)	168 10.3	171 56.5	172 2.8	172 4.4	172 12.3	172 15.1	172 20-4	172 22.9	172 28.5	172 30-2	172 47.5
ORAN START	1 8 3 5 7 - 3 0	17961-60	18024-70	18339.50	18026.20	18001.50	17950-60	17885.90	33778.30	17774-50	17679-19
_ORAN START	49200.30	34992.00	50183.30	34773.90	34611.70	50030-00	34209.50	33997-10	45749.70	49651-10	33436_90
CRAN END	19350.20	17979-40	18019-60	18053-80	18011-49	17985.60	17930-00	17881-20	33760-00	17771.6C	17678-50
_ORAN END	49191-60	34997-20	50183-20	34773.40	346 00 - 70	50030-10	34204.70	33980.20	49742-10	49543-6C	33421-00
EAR DEPTH	76	71			61	59	58	57	56	50	53
DURATION IN HOURS	0.50		66	61		0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED		0.50	0.33	0.50	0.50		2-02	1.52	1.60	1.50	1.48
,	1.53	1-49	1.01	1-51	1.54	1.57					
ERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0./37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
										57.	5 7 4 4 4
CLLOCK	466.6	4401.6	1899.4	537 - 5	40.3	143-1	239-0	790-2	1236.9	231-3	5710-0
AC COD	220.8	379.9	278.5	2.7	73.0	56.5	294.8	212.7	174-2	228.2	339.7
AC OC PERCH	C-0	0.0	0-0	0-0	0.0	0.0	0-0	0-0	0.0	0-0	0-0
THER ROKFISH	0-0	0.0	0.0	´0 . 0	0.0	0.0	C - C	C-0	0.9	0.0	0.0
SABLEFISH	91-9	0.0	0.0	0.0	0.0	0.0	C - 0	0-0	0.0	0.0	0-0
AC HERRING	C - O	0.0	C. 0	0.9	7.3	0.0	0.2	0.0	0.0	0.0	0.0
.TKA MACKEREL	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0_0	0.0	0.0	0.0
SCULPINS	11.1	3.3	14.9	17.7	21.0	8.8	7.9	8.5	9.3	27.5	36.2
TELPOUTS	0-1	0.0	0.2	0.0	0-1	0.2	1-1	2.0	0.1	149.7	130.7
THER RNOFISH	3.4	0.0	0.1	0.2	0.5	0.4	0.2	0.2	0-1	0.3	0.0
TOT ROUNDFISH	793.8	4792.0	2193.1	559.1	142.5	209.0	543-4	1013-6	1420.5	637.0	6216-1
		,,,,,,,				2					
'ELLOW SOLE	0-0	0.0	0.0	9.7	2.5	4 - 1	5.9	22-7	21.8	211-0	110 - 4
CCK SOLE	11.0	1.0	6.2	2.7	6.4	15.0	4.5	17.2	2.3	19.1	48.3
TLATHSAD SOLE	63.5	8.1	46-2	12.7	31.3	17.7	8.6	6.8	20-0	45.8	143.2
ALASKA PLAICE	0.0	0.0	0.0	10.0	9.5	39.5	8.2	41-7	e.2	93.2	2.6
GREENLAND THE	0.0	0.0		0.0	1.4	6.8	8.4	8.6	1-4	9.2	
			0.0								0.0
.RRCHTOOTH FL	7 C - 4	32-4	44-4	6-1	24.0	29.5	13.2	10-0	C-9	0.0	0-0
AC HALIBUT	11-7	38.0	5-1	4.2	2.8	2.5	15.2	2.4	1.9	0.0	2.4
OTHER FLTFISH	3-0	24.3	7 - 4	0.7	0-0	0.5	0.0	0.0	0.0	0.0	0-0
TOT FLATFISH	159.6	103_8	109.2	37.1	77.9	115.5	64.0	109.5	56.2	377.2	356 - 8
AVA 45.6											
SKATES	75-4	0.0	99.8	0.0	86-2	56.7	26.3	3-6	2.3	9.5	0.0
TOT ELASHOBRH	75.4	0.0	99-3	0.0	86-2	56 . 7	26.3	3- 6	2.3	9.5	0-0
RED KING CRAB	c.o	0.0	C.O	0.0	0.0	0-0	0.0	0.0	0.0	0-0	0 - 0
LUE KING CRAB	C-0	0.0	0-0	0.0	0-0	0.0	0-0	C-0	1-4	∴ 0	3-0
TANNER, BAIRDI	1 - 8	9.5	19.5	17.9	1.2	0-1	3.9	4.7	0.1	^ - 1	0.0
TANNER, OPILIO	0.6	0.0	23.5	143-6	78.0	22.0	34.5	14-2	8 - 4	40.8	11.7
TANNER, HYBRID	C - O.	0. C	0.0	0.0	0.2	0.0	0.0	0.0	0-0	0.0	0.0
OTHER CRAB	4.0	2.5	42.3	3.2	24-3	5-3	3.8	11.3	5-6	5.4	0.0
SNAILS	6.9	2.8	14.1	19.8	28-4	82-0	217.2	96.0	36-6	47.0	12.6
SHRIMP	0.0	0.0	0-3	0.0	0.1	0.2	0.4	0.2	0.2	9.0	2-7
STARFISH	904.3	335.7	92-4	3.6	15.0	61.0	24.9	25.5	17.7	5 9 . \$	7.1
SGUID	C.0	0.3	0.0	0.0	0.9	0.0	c. ó	c.0	0.0	0.0	0.0
ICTOPUS			C- 0	0.0	0.1	0.0 0.1	0.0	0.0	0.0		
	C+0	10-4								0-0	0.0
OTHER INVERTS	18.3	1.2	16.7	0-0	2-5	2.7	2.7	0.5	1_0	0.7	1.3
TCTAL INVERTS	937.9	362-4	20 e. 7	18A-1	150-5	174-3	237.4	154.5	70-9	153.9	35.7
STHER	C.0	9.0	C - 0	0-0	0.0	0.0	C. 0	0.0	0.0	9.0	0.0
TOTAL CATCH	1966.7	5258.2	2610.9	784.3	457-1	555∻5	921-1	1281.2	1550-0	•	6558.6
								15		<u>.</u> (1)	
1									•		

Table A-1.--Station and catch data for the NOAA ship Chapman (cont'd).

										_	
HAUL #	144	145	146	147	143	149	150	151	152	153	154
			_								
MONTH/DAY/YEAR	7/23/84	7/23/84	7/23/84	7/23/84	7/24/84	7/24/84	7/24/34	7/24/34	7/25/84	7/25/64	7/25/84
LATITUDE START	59 35.9	59 49.6	59 58.8	60 10.2	60 20.7	50 9.8	50 C.4	59 50-1	59 4C.D	59 20.5	59 0.6
LONGITUDE START	172 34.7	172 54.1	172 39.6	172 59.2	174 6.7	174 25.4	174 0.7	174 14-4	173 52.5	173 50.€	173 45.8
LATITUDE END	59 40.8	59 51-1	60 0.1	50 10.3	60 13-5	60 11.2					
						_	59 59.6	59 51.4	59 39.3	59 19.4	58 5 9. 0
LONGITUDE END	172 32.3	172 54.3	172 39.5	172 56.2	174 e-0	174 24.2	173 58.A	174 12.7	173 51.9	173 59.7	173 45.5
LORAN START	17713.70	332 1 2.3n	17657-40	17561.60	32871.40	32973.10	33077.40	17278-40	17384.50	33494.90	33701-10
LORAN START	3323-70	49532-00	49460.60	494 37 .00	49492.30	49562.60	49574.90		3 32 93 . 39		
	•							33178.60		49747-50	49832-70
LORAN END	17721.50	33195.70	17659.20	17572.90	32885.60	32 958-90	33087-00	17284-50	17387.50	33505.70	33714.80
LORAN END	33314-50	49524-80	49451.80	49431.60	49500-40	49554.80	49576-20	33165.50	33300-80	49752.20	49838-50
GEAR DEPTH	48	46	37		52	57	55	60	59		65
				3 3						5 2	
CURATION IN HOURS	0.50	0-50	0.50	0.50	0.50	0.50	0.50	0.50	0-25	0.33	0-50
DISTANCE FISHED	1.50	1.51	1-43	1-49	1.54	1.52	1-52	1.51	0-75	1-05	1.45
PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
TENTON INNICE TO GETT	0, 5,	0, 3,	· · · · · ·	0 , 3 ;	0 / 3	V 2 31	0 7 31	0 / 3/	0 , 3,	0 / 3/	0 / 31
POLLUCK	4-1	3.6	0.9	6.3	13.4	1495-2	375.6	8841-3	1329-2	743.2	2275-8
PAC COD	C.1	1.8	0.1	3-6	0.1	344.6	5 8 • 0	900.6	183.5	127.0	206.0
PAC DC PERCH	0.0	0.0	0.0	0.0				_			
The state of the s					0.7	0 - 0	0.0	0.0	0.0	0.0	0.0
OTHER ACKFISH	0 = 0	. 0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0-0	9.0	0-0
SABLEF ISH	C.0	. 0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0-0	0.0
PAC HERRING	0.1	0.0	0.0	0.0			Z				
					0.0	0.0	0.2	0-0	0.0	0_0	0-0
ATKA MACKEREL	0.0	0.0	0.0	0.0	0 = 0	0.0	0.0	0-0	0.0	0.0	0.0
SCULPINS	4.9	12.1	238.6	52.8	34-9	10.9	126.6	0.0	1.1	16.2	2.4
EELPOUTS	7.8	19.7	4 - 3	1.9	4-3	9.0	8.6	0-0	3.3	7.5	2.5
		_									
OTHER RNDFISH	1.1	5. 3	0.7	1.3	8 - 1	0.0	C.0	0-0	0.2	0.0	0 - 6
TOT ROUNDFISH	16.1	44.0	245.1	66.4	61.3	1851-6	579.0	9741-8	1517.9	R9 ? _ 5	2438-4
								•			
YELLOW-SOLZ	79.8	88.0	01.2	42.4	^ ^		1 0	0.0			
_			91-2		0.0	1-5	1.8	0-0	0-0	4.4	9-9
RCCK SCLE	0.7	9.5	0.9	0.2	0.1	10.4	0.9	13.2	2.0	27.2	1.5
FLATHEAD SOLE	13.6	15.0	3.2	0.0	5.0	45.5	54.9	13-2	0.5	12.2	0.0
ALASKA PLAICE	21.9	51.3	299.8	37 - 2	0.0	0.0	8.6	1-4	1-2	122.5	0-0
GREENLAND TOT	C.O	- 0 - 0	0-0	0.0	0.9	0.0	0.0	2.5	0.6	17.6	16.5
ARRONTOGTH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
PAC HALIBUT	C-5	0.8	0-0	0.0	1.5	3.0	1.0	84.2	1-2	2.0	0.0
-					-	_	_				
OTHER FLIFISH	0.0	. 0.2	0.0	o. o	0-1	0.0	0.0	6-0	0.0	0.0	0 - 0
IOT FLATFISH	116.4	15 5.7	395-1	79.B	€.5	69.4	67.2	114-4	5.5	182.1	17-9
SKATES	2.5	7.3	15.0	0.9	5_1	7-4	2.9	16.4	10.4	20-4	14.3
			•		_						
TOT ELASMOBRA	2.5	7.3	15.0	0.9	5 - 1	7-4	2.9	16.4	10.4	27.4	14-3
•	•						-				
REC KING CRAS	0.0	0.0	0.0	0.0	0.0	0- 0	0.0	0.0	0_0	0.0	0.7
BLUE KING CRAB	3.9	1.8	3. 9	23.7	2.5	14.1	3.9	6.8	5.7	2.3	0.0
											- •
TANNER, BAIRDI	6.0	0.0	0-0	0.0	0 - 7	0.0	0.0	0.0	0.0	^.1	1-4
TANNER, OPILIO	3C.5	22.1	90.3	1.1	121.3	25.2	20.9	30.1	14.5	97	38.3
TANNER, HYBRID	0 . 0	0.0	0.0	0.0	0 - 0	0-0	0.0	0-0	0.0	2.0	0.5
				_							
CTHER CRAB	6.7	61-1	106-1	2-0	1.5	0-1	0.4	0.0	0.3	6.8	9.5
SNAILS	67.1	102.8	73.9	10.2	0-1	0.2	2.7	15.9	29.0	. 31.3	48-1
SHRIMP	0.0	0.1	C- 7	0.5	0-2	0.2	C. 1	0.0	0.1	0.2	0.7
					0.0	20.3			5.6	6. 6	8.5
STARFISH	36.1	14.3	9. 0	18.6			2.0	13-1			
sauro	0.0	0.0	0.0	0.0	0 • •)	0.0	0.0	C • O	0.0	. 0.0	0.0
OCTÉPUS	5.0	6.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER INVERTS	0.9	0.9	21.1	7-1-3	0-0	14.8	4.5	0.0	2.2	1.5	2.7
		_	_								
TCTAL INVERTS	150-1	239.5	304.2	134.4	125.4	74.8	34.5	65.9	57.4	138.7	129.8
OTHER	c.o	0.0	0- 0	0 . n	0.0	0.0	0.0	0.0	0.0	0° 0	0.0
TOTAL CATCH	287-1	416.5	959-4	281.6	198.4	1994.3	583.6	9938.5	1591-3	1235.1	2639.5
				*							

Table A-1.--Station and catch data for the NOAA ship Chapman (cont'd).

	•										
HAUL #	194	125	195	197	193	199	200	201	202	203	204
MONTH/DAY/YEAF	8/11/84	9/11/14	8/11/94	3/12/84	8/12/84	8/12/84	9/13/84	A/13/84	8/13/84	8/13/94	8/14/94
LATITUDE START	59 59.4	60 19.3	60 39.4	60 40.9	50 20 8	6n 0.2	59 40.6	59 20-6	59 0 ₋ 5	58 43.4	58 39.4
LONGITUDE START	174 36.3	174 43.4	174 48.5	175 27.5	175 23.9	175 16.5	175 10.4	175 5-9	175 0.8	174 54.2	175 34.2
LATITUDE END	60 0.9	60 20.7	60 40 9	63 39.6	60 19.3	59 59.8	59 39.5	59 19.4	58 59.2	58 41.9	59 42-7
LONGITUDE END	174 36.8	174 44-3	174 49.0	175 23.1	175 23.9	175 17.2	175 12.4	175 7.5	175 2.2	174 54.4	175 33.0
LORAN START	17176.20	17133.50	17099.90	15943.10	15953.40	16998.70	17028.40	1704 9-40	17071-00	17093-30	16873-10
LORAN START	49621.20	49541.60	49459.00	494 97 - 70	495 78 - 70	49658.00	49733-40	49810-40	49884-70		
LORAN END	17172.90	17128.70	17095-79	16941-60		-				49943-70	49971-70
LORAN END	49615.40	49535.30	-		16963.30	16995.80	17019-10	17041-20	17053-40	17096.80	16886.30
GEAR DEPTH	61	49335 - 30	49453-10	49504.00	49584-90	49664-40	49739.50	49816.30	49890.30	49948-90	49967-10
DURATION IN HOURS	0.50		55 0.50	62	63	55	72	75	72	90	76
		0.50		0-50	0.50	0-50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	1.50	1.55	1.52	1-50	1.50	1.49	1-50	1.50	1.49	1.50	1-46
PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	3 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
POLLOCK	1213.1	595.1	237.7	793.8	275-8	487.9	465.8	697.6	306.4	1276.9	65.5
PAC COD	224.5	352.9	199.4	308-9	223.6	134.7	145-1	200.5	34.9	537.4	0.0
PAC DC PERCH	0.0	0.0	0.0	0.0	0.7	0.0	0.0				
OTHER ROKFISH	0.0	0.0	0.0	0.0	0.0			0-0	0.0	0 · 0	0.0
SABLEFISH						0.0	0.0	0.0	0.0	9. O	0.0
	C+0	0.0	C.0	0.0	0.0	0.0	0.0	C - O	0.0	27.3	0-0
PAC HEARING	0-2	0.2	C • 0	0-0	2.2	0.0	0.0	0.0	0.0	0.0	0-0
ATKA MACKEREL .	0+0	ō• 6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0 - v
SCULPINS	2.6	3.3	26.1	4.9	1.0	5 • 8	2.0	C - 5	3.0	17.4	0 - 0
EELPOUTS	4 - 1	0.5	4.8	3-1	1.9	1.8	1.1	1 - 6	2.7	0.1	0.0
OTHER RNDFISH	C - 1	ე. 3	1.1	1 - 2	6-1	0.2	0.2	0.7	1.2	l - 9	6-6
TOT ROUNDFISH	1444-7	95 2. 3	459.0	1111.9	504.5	630.4	614.3	900-9	348.3	1855.0	66.5
YELLOW SOLE	1.9	1.3	1.8	0.0	0.9	0.0	C. 0	0-0	0.0	2.0	0-0
ROCK SOLE	5.4	1-1	6•3	1.1	0.5	0.0	1.7	7.5	0.0	.57.2	
FLATHEAD SCLE	ć. 9	0.0	0.0	_		0.7				25.4	0.2
ALASKA PLAICE	1.0	3. 2		1-4	1.1		2.3	27.7	29.7		4 - 7
GREENLAND TOT	5.9	5.7	0.9	0.0		2.3	2.3	1-8	0.0	. 0.0	0.0
			2.3	14.7	15.9	17.5	24.9	11.8	9.9	0.0	0-0
ARROWIDDIH FL	0.0	0.0	0.0	0.0	0.2	0-0	18.1	47.6	33.5	155-0	11-3
PAC HALIEUT	23.5	ŷ - 5	ů• 0	0.0	0.0	0.0	33.3	C- 0	0.0	15.6	0-0
OTHER FLIFISH	7.3	41-7	49.0	41.5	2.7	0-7	. 6• 8	0.0	1-0	7.5	.0• ∪
TOT FLATFISH	44.9	53.5	60-8	58.7	20-3	21-1	83-6	96.4	114-1	254_6	16.2
SKATES	13-2	15.6	11-3	41.7	31-8	15.6	37-2	34.5	52.8	25.7	1-0
TOT ELASMOSTH	13.2	15.6	11.3	41-7	31.8	15.6	37.2	34-5	52.8	26.7	1.0
			ē			•					_
RED KING CRAS	0.0	0.0	0.0	0.0	0.0	0.0	-0 • 0	0-0	0 - 0	0.0	0-0
BLUE KING CRAP .	C-0	5.7	C. 0	0.0	0.0	13.7	8.8	0-0	0-0	0.0	0° u
TANNER, BAIRDI	(.)	ŋ . n	C- 0	0.0	0.0	ŋ . n	0.0	0-0	0.0	60 - 3	10.2
TANNER, OPILIO	22.9	13.1	59.9	80.9	27.9	25.9	56.3	36.6	3.0	0.1	2.5
TANNER, HYBRID	C • 0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER CRAB	r-4	0.7	C. 2	1.2	1.5	3.6	2.1	3-2	8.6	n _ 3	0.6
SNAILS	42.2	7.4	3.1	14.0	20.3	. 6.4	29.4	35.1	29.1	7.5	0.4
SHRIMP	0.2	0.2	7.0	0.1	0-2	0.3	0.6	0.3	. 0.3	0.0	0.0
STAFFISH	19.1	9. 6	3.1	15-0	11-5	61.6	6.3	20-0	14.1	4.6	1.7
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0
CCTCPUS	0.0	0.0	0.0	1-6	1-4	0.0	0.0	C-0	0.1	0.0	0-0
OTHER INVERTS	9.3	4.6	6.8	2.2	7-3	7.3	5.7	11-5	6.9	₹.1	23.3
TOTAL INVERTS	93.5	40.3	73.2	115.9	70-1	120.6	109.2	106.6	61.2	69.0	38.7
TOTAL ANTERIS	90	4 Ú • 3	\ 3 - c	11.747	* U • 1	140.0	1 U 7 • Z	1 0 6 • C	01.4	07.0	30.1
OTHER	C - 0	- 0 • 0	0.0	0.0	0.0	0.0	0-0	0-0	0.0	0.0	0.0
TOTAL CATCH	1596.3	1062-7	614.3	1328.3	526.6	787.8	844.4	11 38- 4	576.5	2206.3	122.4

Table A-1---Station and catch data for the NOAA ship Chapman (cont'd).

HAUL #	205	206	207	209	209	210	211	21 2	213	214	215
MONTH/DAY/YEAR	8/14/84	8/14/84	8/14/84	8/15/84	8/15/84	8/15/84	8/15/84	9/15/84	8/16/84	8/16/84	3/16/84
LATITUDE START	58 59-5	59 19.8	59 39.4	59 59.2	60 19.5	60 39.5	60 39.7	60 21.1	60 40.6	60 39.4	60 20 B
LONGITUDE START	175 44-0	175 45.5	175 54.2	175 56.9	176 2.7	176 12-5	176 47.5	176 42-4	178 10-8	177 32.4	177 22.9
LATITUDE END	59 0.9	59 21-2		60 0.7	60 21-1	EO 41-0	60 38.5	5D 20.0	60 39.3	50 40.6	60 19.4
			59 41.0				•				
LONGITUDE END	175 44.8	175 45.5	175 54.6	175 57.0	176 2.9	176 13-0	176 49-1	176 44-1	178 12.5	177 30.6	177 23.9
LORAN START	16845.50	16853.30	16822.00	15317-20	16797.10	16760.30	16615.60	16626-10	16269-50	164 23 - 30	16449.90
LORAN START	49909.40	49838-10	49770-10	496 95 • 70	49620-00	49548-80	49578_40	49645-60	49634.40	49513.6C	49674.50
LORAN END	16842.70	16854.40	16820.60	16817-40	16796.73	16758.60	16608-30	16617-90	16260-70	16436.90	16443-90
LORAN END	49904-90	49832.80	49764-50	49689.90	49614-00	49543.30	49584-30	49651-20	49640-10	49507.90	4968050
GEAR DEPTH	75	76	77	73	68	67	72	17	91	8 2	8 6
DURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	1-47	1.51	1.52	1.50	1.52	1-49	1-49	1-48	1.51	1.52	1.52
PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
TERRORITATE F GEAR	0 . 5.	·	0, 3,	5 • 3.	V , J .	0,031	J , J.	5 , 5 .		0, 3,	U , J.
POLLOCK	220.9	419-8	954.8	897.0	1250.7	1032.2	514.8	271.9	25 4.2	600.€	359.7
PAC COD	85.7	112.5	106.5	146.3	155.4	124-3	89.4	144-0	108-4	139.3	214.5
PAC OC PERCH	0-0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0~ 0	0-0
OTHER ROKFISH	C - 0	0.0	0.0	0.0	C.0	0-0	0-0	c. o	0-0	0.0	0.0
SABLEF ISH	C.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HERRING	. 0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ATKA MACKEREL	C. 0	0.0	0.0	0.0	0.0	0.0	C-0	0.0	0.0	0.0	0-0
SCULPINS	0.0	2.4	1.4	2.9	0.8	2-4	1-7	1.5	1-0	0.3	1.5
EELPOUTS	0-1	22.9	7.0	1.3	0.7	3. 4	1.8	2. 3	1.6	1.0	8-2
OTHER RNDFISH	0-0	1.3	0.3	0.0	0.1	0-2	0.0	0.2	9_0	0.0	0-2
IOT ROUNDFISH											
TOT KOOMDETON	306.7	558. 9	1070.1	1047-4	1407.6	1162-6	607.7	419.9	365.3	741 - C	584-1
											•
AELFOM SOFE	C.O	0.0	0.0	0.0	0.9	9.9	0-0	0.0	0.0	0.0	0.0
ROCK SOLE	C_0	1-0	2.0	0.0	0.9	9-6	0.4	0.5	0-0	0-0	0-0
FLATHEAD SOLE	1.0	7.3	1.6	3.9	0.7	1.7	0-6	4-3	0.1	0.3	1.0
ALASKA PLAICE	0.0	0.0	0.0	0.0	0-0	0-0	0.0	0.0	0.0	0.0	0.0
GREENLAND IBI	1.4	10.4	16.8	24-3	26.3	13.8	26.3	41.3	24.3	28-1	28.1
ARRONTOOTH FL	4.8	18-1	7.7	4.1	0.5	1-4	5-9	2.0	21.5	4.2	0.0
PAC HALIBUT	C-0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER FLIFISH	0.0	0.0	0.0	0.0	0.8	0-6	2.9	0_5	11.3	10.7	13.6
TOT FLATFISH	7.1	36.8	28.1	32.2	29.5	_	36-1	48.5	57.3	43.3	42.7
TOT TERM ISH	1.1	10=0	20.1	36.0	67.0	18.1	2647	. 4043	31.5	4343	46.06
CHATEC				FA 0				10 6	19.3		
SKATES	0-0	7.5	C- 0	59-0	0.9	5-9	3-4	19.5		5- 0	8 - 4
TOT ELASMOBRH	0.0	7.5	0_0	59.0	0-9	5.9	3.4	19.5	19.3	5.0	9 - 4
RED KING CRAB	C = 0	0-0	C. 0	0.0	0-0	0.0	0-0	0.0	0.0	0.0	0.0
BLUE KING CRAB	0-0	0-0	0.0	0.0	0.0	0_0	0.0	0.0	1.4	. 0.0	0-0
TANNER, BAIRDI	C.9	0.3	0.2	0.1	0.0	0.0	0.0	C.0	0.0	0.0	0-0
TANNER, OPILIO	0.3	3-4	9.9	67.6	61.1	27-1	20.9	46.7	91-1	12.8	13-1
TANNER, HYBRID	0.0	0.0	0.0	0.0	0.0	0-5	0.0	0.0	0.0	0.0	0.0
OTHER CRAB	1.2	9-1	9.9	5.9	4.0	2.8	4.2	6.8	7.3	1.7	2.1
SNAILS	2.6	-	8.2	27.7				40.4	27-8	5. 4	
-	-	7-8			10.3	12-9	10-7				15.0
SHRIMP	- 0-0	2-0	1.1	0.6	0.7	0.3	0-5	1.6	1.3	7.4	1.7
STARFISH	1.9	101-8	70.0	68.4	22.9	15. 3	40.6	26.7	20.4	9.8	184.6
SCUID	C • O	0.0	0.0	0.0	0.0	0-0	0-0	0.0	0.0	0.0	0-0
OCTOPUS	C-0	0.0	0.1	0-0	0.0	0.0	0-1	0.1	9.7	0-0	0.0
OTHER INVERTS	1.7	11.7	11.3	8.8	6.3	2.0	8.3	3. 4	11.3	4-1	5.5
TOTAL INVERTS	9.2	141-1	110.6	179-1	105.2	60 - 9	85-3	1 25.7	161.3	34.2	221.0
							-				-
OTHER	C-0	0.0	0.0	0.0	0.0	0-0	0-0	0-0	0.0	0.0	0-0
•										_	
TOTAL CATCH	323-0	744.3	1208.9	1317.7	1543.3	1247.5	732.4	613_7	603-1	823.5	856.3

Table A-1--Station and catch data for the NOAA ship Chapman (cont'd).

HAUL #	216	217	218	219	229	221	222	22 3	224	225	2 26
MCN TH/DAY/YEAR	8/15/34	8/17/24	8/17/a4	8/17/84	8/17/84	8/18/84	8/18/84	8/18/84	8/18/34	8/19/84	8/19/84
LATITUDE START	50 0.5	50 0.6	60 0.0	59 40.5	59 40-1	59 19-9	59 19.7	59 0.€	58 59.5	58 59.0	58 40 - 6
LONGITUDE STAPT	177 55.8	177 12.9	176 49.1	177 9.4	176 33.9	176 21.8	177 3.5	177 35-6	176 58 7	176 20.3	176 50.3
LATITUDE END	59 59.2	59 59-1	60 0.3	59 39.5	59 40-2	59 19.8	59 20.0	58 59.3	59 0-6	58 58-C	58 39.6
LONGITUDE END	177 57.3	177 14.0	176 37.1	177 10.5	176 30-8	176 23.9	177 6.4	177 37.2	176 56.3	176 27.4	•
LORAN START	15276.80	16472-40	16621-40	16458.70	16633-20			_			176 52.2
LCRAN START	49763.40		-			16672-50	16463-60	16265.80	16455.70	16655.30	16465.50
		49740.90	49723-10	49807.99	49791-60	49856.50	49874.30	49941-40	49934.80	49924.70	49987-00
LOHAN END	16267-90	16465-99	16635.40	16457.70	16648.00	16660.70	16449-40	15254.90	15459.50	16543.10	16453.00
LORAN END	49758.40	49745.70	49720-00	49812.30	49789.50	49860.90	49874.50	49945.20	49931-20	49928.60	49990.39
GEAR DEPTH	80	7.7	79	94	7 5.	76	- 85	76	78	75	7 5
BURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	C.50	0 -50	0.50	0.50	0.50	0.50
DISTANCE FISHED	1.50	1.52	1.50	1.49	1.50	1.43	1.50	1-49	1.52	1.51	1.48
PERFORMANCE / GEAR	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37	0 / 37
POLLOCK	869.4	253.3	304.4	591.9	589-2	1334-0	634.3	3576.7	341.8	145.6	63.7
PAC COD	151.5	17.5.3	173.7	122.0	250.2	115-2	162-6	754-1	40-6	173.7	6.8
PAC OC PERCH	0.0	0.0	0.0	0.7	0.0	0.0					
OTHER ROKEISH	0.0	0.0	C. 0				0.0	. 0-0	0-0	0.0	0.0
				0.0	0-2	0.0	0-0	C-0	0-0	0.0	0.0
SABLEFISH	C-0	0.0	0.0	0.0	0.0	0-0	0-0	0.0	0.0	9.0	0.0
PAC HERRING	0.0	0.0	0.0	0.0	. 0.•0	0 • ū	C_ 0	0-0	0-0	0.0	0.0
ATKA MACKEREL	€.0	0.0	0.0	0.0	0.0	0.0	0-0	0-0	. 0.0	0.0	0 • 0
SCULPINS	1 - 0	2.6	. 0.7	3.9	4.7	3.6	6.1	0.0	10.9	5 . 7	0-0
EELPOUTS	1.0	2.7	2.4	1.5	17.7	7.7	3.9	0-0	3-6	4 - 3	9- 0
CTHER RNDFISH -	C.8	0.0	0.1	0.6	0.2	0.3	1.0	0-0	0.5	2-1	0-0
ICI ROUNDFISH	1023.7	434.0	487.3	7 25 . 0	861.9	1461-8	807-9	4330-9	397-3	329.5	70.5
YELLOW SOLE	0.0	0.0	0.0	0.0	0.0		C- 0	C - O	0.0	0.0	0.0
ROCK SOLE	(.0	. 0.0	0.0	0.7	0.5	0-0	C- 0	0.5		0.0	0.0
FLATHEAD SELE	1-1	0.9				0.0			0-0	0.0	0 • 6
ALASKA PLAICE	0.0	0.9	12.5	337.0	40.9	7-7	151.5	9.7	269.9	193.9	0 • 1
			0.0	0.0	0.7	0.0	0-0	0.0	0.0	0 • 0	0.0
GREENLAND TBT	5.2	8.4	18.6	1-1	4.5	11-2	0.0	2.7	1.0	. 0-0	0-0
ARRCHTOOTH FL	0.9	7-0	15.9	112.9	15.7	7.7	16.6	21.0	21.8	31.8	2 - 0
PAC HALIBUT	C = 0	0.0	0. 0	4-5	0.0	0.0	7-9	0-0	2 • 4	1.5	0.0
OTHER FLTFISH	₽•3	13.3	31.3	14.3	10-0	8.4	e.s	0-0	. 5.9	7.7	0.0
TOT FLATFISH	16.1	29 . 7	78.2	470.6	70.9	35.0	186.8	33.9	300-9	?34 . 9	2 - 9
SKATES	20.2	26.5	12.2	40.4	44.7	51-8	2-5	9-1	17-7	34.9	0-0
TCT ELASHOBRA	ŽC.2	26.5	12.2	40_4	44.7	51-9	2-5	9-1	17-7	34.9	0.0
RED KING CRAS	0.0	C_ D	0.0	0.0	0.0	.0.0	0-0	0. 9	0.0	0.0	0• 0
BLUE KING CRAB	0.0	0.0	0.0	-0.0	0.0	0.0	0.0		. 0.0		
TANNER, BAIRDI			-					0.0		0.0	0.0
	C - 4	0-0	0.0	2.0	C-0	9.3	0-0	12.2	0.6	0-1	1.0
TANNER, OPILIO	1.5	1.4	4 - 8	2.7	5.4	1-1	C- 6	€.2	0.3	^ -6	0.0
TANNER, HYBRID	C = 0	0.0	0.0	0.0	0.0	8.7	0.0	0 . 0	1-1	2.9	0-2
OTHER CRAS	9.8	4.4	2.5	17.9	11.5	22.5	3.9	0 - 0	10.3	9 • 4	0.3
SNAILS	18.7	13.2	17.4	75.5	25.4	19.2	21-0	0.5	15.2	23-9	0.1
SHRIMP	4.3	1-1	2.4	0-5	3.6	4 . 8	0.1	0.0	0-2	n • 3	0.0
STAPFISH	121.7	. 45. 4	78.7	7.8	62-6	911-0	1.5	0 - 4	4 - 4	4 - 8	1.5
SQUID	0.0	0.0	0.0	0-1	0.7	9+7	0-1	0.0	0-2	2.3	0-0
OCTOPUS	C•5	0.5	0.4	1.7	0.0	1-4	C- 0	0-0	0.0	0.1	0.0
OTHER INVERTS	40.7	7. 8	12.4	16.4	18-6	24.4	4- 2	c. o	2.5	5.1	157.4
TOTAL INVERTS	197.5	73.8	118.5	120.5	127.1	993.0	31-4	19-2	34.9	47.6	170.5
OTHER	: C.O	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL CATCO	1257 5							-			
TOTAL CATCH	1257.5	564.0	696.3	1 356.5	1104.5	2541.7	1028.7	4393.1	750.9	646.€	243_8

Table A-1. --Station and catch data for the NOAA ship Chapman (cont'd).

HAUL O HONTH/DAY/YEAR LATITUDE START LONGITUDE START LATITUDE END LORAN START LORAN START LORAN START LORAN END LORAN END LORAN END GEAR DEPTH DURATION IN HOURS DISTANCE FISHED PERFORMANCE / GEAR	56 40-1 176 11-3 15650-90 49981-00 16676-30 49979-30 77 0-50
POLLOCK PAC COD PAC OC PERCH CTHER RCKFISH SABLEFISH PAC HERRING ATKA MACKEREL SCULPINS EELFOUTS CTHER RNDFISH TOT ROUNDFISH	247.2 C.0 0.0 C.0 0.0 C.0 0.0 0.1 C.0 C.0 247.3
YELLOW SOLE ROCK SOLE FLATHEAD SOLE ALASKA PLAICE GREENLAND 19T ARROWIOOTH FL PAC HALIBUT OTHER FLTFISH TOT FLATFISH	C.0 1-4 2-5 0-0 C.0 5-0 0-0 0-3 9-2
SKATES TOT ELASMOERH RED KING CRAB BLUE KING CRAB TANNER, BAIRDI TANNER, OPILIO TANNER, HYBRID OTHER CRAB SNAILS SHRIMP STARFISH SGUID UCTOPUS OTHER INVERTS	7.0 7.0 0.0 0.0 2.5 0.9 0.3 0.8 0.5 0.0 0.0 0.7 21.0
GTHER	0.0 284.5

HAUL #	1	2	3	4	5	6	7	8	9	10	11	
MONTHYDAY/YEAR	6/10/84	6/16/84	6/10/34	5/10/84	6/11/34	6/11/84	5/11/84	5/11/34	6/11/34	6/12/84	6/12/94	
LATITUDE START	57 0.2	57 19.2	57 38.7	57 58.7	58 14.6	58 1.3	57 41.1	57 20.3	56 59.5	56 40.9	56 27.5	-
LONGITUDE START	159 6.4	159 3.9	159 1.3	158 57.9	150 4.4	160 12.4	160 15.9	160 18.0	160 19.7	160 21.1	151 28.9	
LATITUDE END	57 1.9	57 20.9	57 40-1	57 58.6	58 13.8	57 59.9	57 40.0	57 13.7	56 58-1	56 39.5	56 19.7	
LONGITUDE END	159 5.5	159 2.9	159 . 2.4	159 1.0	160 6.5	160 12.4	160 14.4	150 18-2	160 19.6	150 22.C	161 31.5	
LORAN START	33179.40	33074.40	32960-60	32836.80	32870_20	32971-90	33104-10	33229-40	33345.80	33443-40	33705.90	
	45704-00	45681-70	45663-60	456 45 . 00	46082.00	46133.70	46158.90	46177-40	46195.50	46211-50		
LORAN END	33168.70	33063.00	32955 - 10	32943.90	32330.10	32981-10	33107-20				46672.20	
LORAN END	45697.20	45675-10	45671-00	45664.80	460 96 40	46134-10	46149-20	33238 ₋ \$0 45179 ₋ 20	33353.20	33425-60	33715.90	
GEAR DEPTH	15	27	25	20	15	27	29	32	46194-90 34	46218-80	46689-90	
BURATION IN 40UFS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0-53	32 0.50	34	
DISTANCE FISHED		1.82	1.48						_		0.50	
	1-78			1.62	1-44	1.44	1-33	1.50	1-50	1-51	1.54	
PERFORMANCE / GEAR	0 / 38	0 / 38	0 / 39	0 / 38	0 / 39	0 / 38	0 / 38	0 / 38	0 / 38	0 / 36	0 / 38	
PCLLOCK	4.5	94.8	2473.4	440.2	0.0	33.3	156-1	33.0	216.5	264.9	24-1	
PAC COD	392.1	165.1	172.9	378.4	171.5	443.2	229-2	147.5	107.4	21.8	66.5	
PAC OC PERCH	C-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
OTHER ROKFISH	0.0		0.0	-0.0	_					0.0	0.0	
SABLEFISH	C.0	0.0	0.0			0-0	C-0	0.0	0.0	0.0	0.0	
				0.0	0.0	0.0	0-0	0.0	0.0	ū•0	0.0	
PAC HERRING	7.3	5.0	0.0	6.7	4.4	68.7	0-0	0.0	1-9	6.0	0.0	
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0-0	0.0	C = 0	0.0	0.0	0.0	
SCULPINS	11.5	4.7	0-0	24.2	120-8	23.5	0-7	0.5	8.5	1 - 8	3.2	
EELPOUTS	0-0	0.0	0.0	0.0	0.0	0 - ū	0.0	0-0	0.0	č• c	0.0	
OTHER RNDFISH	1.9	7.6	0.8	0.3	13-5	2.7	2 • 8	5-4	0.2	?-1	3.0	
TOT ROUNDFISH	417.4	272-1	2647.1	849.8	310.5	571.4	38 €∙9	187.4	334.5	290.€	166.9	
YELLOW SOLE	120.7	183.7	652.9	1248.1	1076.2	1106.9	404.8	3360-1	238.7	157.4	436.7	
ROCK SOLE	1117-2	605.7	370.2	872.3	183.3	332.9	496.3	425.0	366.6	276.2	1099.6	
FLATHE AD SOLE	C • 0	1.5	0.0	0.0	0.0	8.3	18.3	14-3	32.4	5.4	29.6	
ALASKA PLAICE	0.0	9.7	2.0		0.0	10.4		59.5	1.2	9.9	3.7	
GREENLAND TOF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2. 0	0.0	
ARRCWTOOTH FL	C - 0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	
PAC HALIBUT	12-1	10.6	3.8	14.5	133.2	16.7	17.7	0.0	9.3	19.5	22.6	
OTHER FLTFISH	49.2	7.8	3.0	44.3	2.4	19-8	7.3	4.4	8.5	3.6	45.2	
TOT FLATFISH	1299-1	810-0	1032-0	2179-2	1395.2	1495.0	951-7	3863-3	657.3	453.4	1638.6	
107 1271 1377	12//-1	01010			ਾ 13/)ਚ ਵ ਕੋ	147340	73147	2007=2	031.5	45,64	1030.0	
SKATES	. C • O	51-7	0.0	0.0	0.0	0.0	P. 5	0-0	15.3	23.6	27.5	
TOT ELASMOBRA	C-0	5 1.7	0.0	0.0	0-0	0 •0	e - 5	0.0	15-3	23,6	27.5	
DEP KING ODES	• •		· .				20.5	3004				
REC KING CR 43	C.O	3.4	5-4	/	0.5	13.2	20.9	3001-4	42.9	9-6	0-0	
BLUE KING CRAB	C-0	0-0	0.0	0.0	0.2	ō• o	0.0	0-0	0.0	ű-ű	0.0	
I CRIAG & RENNAT	0.0	1.2	-		0.0	0.5	4 - 3	7.7	23.8	3.9	1-4	
TANNER, OPILIO	C = 0	0.0	C • 0		0.0	0.0	1 - 4	0-2	0.0	· • • 1	0.9	
TANNER, HYBRIC	0.0	o • 0	C • 0	0.0	0-1	0.0	0.0	0-0	0.0	9.0	ე. ი	
OTHER CRAB	7.3	2 4 . 8	1 - 4	0.0	24.4	5.9	9.9	4- 4	1-4	15.6	27.2	
SNAILS	C = 1	0.8	0.4	0.0	C -)	14.2	₹•1	7-0	0.9	1-1	15.8	
SHRIMP	0.2	0.1	0.0	9.3	0 - 4	0.2	0-1	0.0	0.2	٦-1	ງ. າ	
STARFISH	548.5	1264.5	256.3	273-9	42.9	177.5	222.4	85.9	521.8	195.3	150.1	
SQUID	0.0	0.0	0.0	0.0	0 - 7	0.0	0.0	0.0	C-0	0.0	0.0	
CCTOPUS	C - 0	0.0	C_ 0	0.0	0.0	0.0	0.0	0-0	0.0	0_0	0.0	
GTHER INVERTS	10.7	51.0	53.3	30.0	36.3	43.0	185.4	104.9	298.1	50.0	ŏ 0 - 2	
TOTAL INVERTS	566.9	1360.9	317-2	305.0	104.3	254_4	447.5	3211.5	938.9	275.7	? 75. 7	
OTHER	C - O	2.0	C. 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TOTAL CAICH	2283.3	2494.7	3996.3	3333.9	1910-0	2320.8	1796-5	7262.2	1996.1	1053.3	2178.0	

∂HA`UL #	12	1.3	1 4	15	15	17	19	19	20	21	22
HCNTH/DAY/YEAR	6/12/84	6/12/84	6/13/34	6/13/54	5/13/84	6/13/84	6/14/84	6/14/84	6/14/84	6/14/84	6/15/84
LATITUDE START	56 38.9	56 59-6	57 19.3	57 39-2	57 58.9	58 19.2	58 40-1	58 21.2	58 0.8	57 41.2	57 20.6
L'ONGITUDE START	151 35.0	161 34-0	161 32.1	151 30.0	161 29.1	161 24.9	162 31.5	152 42.8		162 45.3	162 47-1
LATITUDE END	56 39.9	56 60.0	57 20.9	57 4C-8	59 C.1	58 20-1	58 39.3	58 20.1	57 59.3	57 39.6	57 19-2
LONGITUDE END	151 37-1	161 35.0	161 33.3	161 30-1	161 29.3	161 27.2	162 31.8		162 43.3	162 44.6	152 47.6
LORAN START	33633.20	33529.30	33402.00	33284.40	33157-30	33009-20	33003-10	33172-90	33323-80	33458-40	33592.00
LORAN START	46707.30	46693-90	46673.30	46651-10	466 37 - 20	46602.00	47013.30	47102.10	47130.20	47149.70	47174.30
	33633.50										
LORAN END	_	33524-40	33403.00	332 75 - 30	33148-90 46638-19	33007-70	33009-40	33177-90 47094-60	33331.50	33466.60	33601-90
LCRAN END	45720-70	46599-90	46680.50	46651-60		46616.20	47015-00		47123.50	47145.10	47178-6C
GEAR DEPTH	49	37	31	29	37	17	25	17	22	22	27
DURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	1.50	1-46	1.65	1-53	1.36	1.51	0.74	1.30	1-67	1.59	1-45
PERFORMANCE / GEAR	C / 38	0 / 38	0 / 38	0 / 38	0 / 39	0 / 38	0 / 38	0 / 38	0 / 38	0 / 38	0 / 38
POLLOCK	106-5	909_4	118.0	26.3	26.1	0-0	42.6	3.6	25.9	1014-8	163_6
PAC COD	36.5	7.3	10.3	43.9	116.3	55.5	150-1	100.7	247-6	107.6	71.3
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0_0	C. 0	0.0	0_0	0.0	0.0
GTHER RCKFISH	C • 0	0.0	0.0	.0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0-0	0.0	C. 0	0.0	0.0	0.0	0 = 0
PAC HERRING	0.0	1-1	0.0	0.0	0.0	2.3	0.0	0.0	0-0	0-0	0.0
ATKA MACKEREL	č. j	0.0	0.0	0.0	0.7	0-0	0.0	0-0	0.0	0. 0	0.0
SCULPINS	C.0	0.0	C-0	3.9	7.3	21.2	16.1	37.7	16-2	1.8	1.9
EELPOUTS	0.0	0.0	0.0	0.0	0.0	8.4	0.0	0.0		u²ú T•€	
									0-0		0.0
CTHER RNDFISH	0-5	0.1	0.7	4.0	7.5	0.5	5.5	0.5	0-0	1.5	1-2
TOT ROUNDFISH	147.6	917-9	129.0	73.0	157-4	88.0	214-4	142.6	290.4	1125.8	238-4
YELLOW SOLE	523-6	511.7	374.6	657-6	744.0	428.5	246.8	557.0	1158-2	866.2	754.5
ROCK SOLE	107.5	234.9	109.8	36.7	155-1	105.8	21.3	310.3	109.0	132.6	552-7
FLATHEAD SCLE	87.3	72.6	32.8	55.2	18-1	2.6	0.0	0.2	34.9		52.7
ALASKA PLAICE	62.9	52.5	36-9	21.0	36.1	9. 9	11.8	19.5	121-6	47.4	20.5
GREENLAND TBT	C-0	0.0	0.0	0.0	0.0	0.0	0.0	C.0	0.0	9.0	0-0
ARRONTODIH FL	0.8	0.0	C. 0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0-0
PAC HALIBUT	3.9	4.9	8.5	4.5	5.4	4-2	25.8	17.3	28.7	4.7	0-0
OTHER FLTFISH	0.3	0.0	5.1	19.3		4.2	2.7	18.6	6.3		
					10.9					21.8	76.9
TOT FLATFISH	785.3	926.6	567.8	844.2	969-5	555.2	30 8. 4	9 22.9	1458-1	1089.3	1457.3
SKATES	9-1	0.0	8. 2	19.3	22.5	0.0	0.0	4.5	15.7	7.7	17-1
TOT ELASMOBRA	9-1	0.0	8.2	19.3	22.5	0.0	0-0	4.5	15.7	7.7	17-1
RED KING CRAS	57.2	29.9	103.9	127.7	84.4	2.9	C. 0	9.0	20.0	14-1	51 • 0
BLUE KING CRAB	0.0	0.0	0.0	9.9	0.0	0.0	0.0	0-0	0.0	0.0	0.0
ICALAG . REMNAT	123.9	28-1	52.4	13.6	0.1	0.0	0.0	0.0	0-0	0.0	12-2
TANNER, OPILIO	7.7	9. 5	2.5	0.1	0.0	9.0	0.0	0_0	0-0	0.0	1-5
TANNER, HYBRED	C•5	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0-0	0.0	0.0
CTHER CRAB	44.8	2.3	30.3	24.9	50.0	6-5	10.3	4-8	17.5	23-5	59.8
SNAILS	14.8	0.0	63.4	54.9	65-7	0-7	0-6	0.5	12.3	33.4	195.7
SHR IMP	C.0	0.1	0.2	0.5	0-0	0.1	1-1	0-1	0.2	0.0	0.1
STARFISH	79.2	32.4	41.0	14.9	290.2	252.5	22.0	99.1	212.7	192.2	38.7
SGUID	6.0	0.0	C-0	0.0	0-0	0-0	0.0	0.0	0.0	2-0	0-0
OCTOPUS	C-0	0.0	0.0	0.0	0.0	0-0	0-0	0-0	0-0	0.0	0.0
CTHER INVESTS	143-4	64.4	351-4	31.4	63.7	19-8	P - 0	2.9	4.4	7.8	18.3
TOTAL INVERTS	471.2	165.7	645.1	267.9	554.0	281.4	41-9	1 08-1	267-0	271.0	368.5
OTHER	C-0	0.0	C. 0	0.0	0.0	0.0	C- 0	0.0	0.9	0.0	0-n
TOTAL CATCH	1410.3	2010-2	1350-1	1209.3	1703-4	924-6	564.7	1178-1	2031.2	2493.8	2071.3

Table A-2 -- Station and catch data for the chartered vessel Alaska (cont'd).

HAUL #	23	3.4	25	26	27	28	29	30	31	32	33
MONTH/CAY/YEAR	6/15/84	5/15/84	6/15/84	6/15/84	5/16/84	5/16/84	6/16/54	5/17/84	6/17/34	6/17/84	6/17/54
LATITUDE START	57 1.2	56 41-2	56 20.8	56 0.6	55 40-2	.55 19.8	55 38.9	55 59.7	56 19.1	56 39 3	56 59.1
LONGITUDE STAFT	162 47-1	162 47.0	162 40.3	152 48.9	162 49.7	164 2-8		163 59.9	163 59.8		
	56 59.9	-								154 0-0	164 0.0
LATITUDE END		56 39.6	56 19-2	55 59.0	55 38.7	55 21.2	55 40.2	56 1.2	56 20.6	56 40.8	57 0-5
LONGITUDE EN)	162 46.5	162 46.5	162 49.7	152 49.4	152 49.9	164 3.2	164 0.3	163 59.7	164 1.0	164 0.€	164 0.7
LORAN START	33703.40	33809.30	33910.40	33999-90	34031.60	34342.10	34273.80	34196.90	34115.00	34022.00	33913-00
LORAN STARI	47193.30	47188.70	47200.70	47205.40	47208.70	47667-90	47664-10	47672.00	47676.30	47577 - 30	47673.30
LORAN END	33709.30	33916.00	33919.20	34007-70	340 87 - 30	34339.20	34269-70	34190.30	34112.80	34016.30	33912.20
LCRAN END	47179.70	47186.10	47203.90	47208.90	47209-70	47671.70	47665.60	47671-00	47684.30	47681-50	47677.50
GEAR DEPTH	33	40	43	43	27	43	53	50	48	42	3.8
CURATION IN HOURS	0.50	0.50	0.50	0.50	0.51	0.50			0 • 50		
							0.50	0+50		0.50	0.50
DISTANCE FISHED	1-43	1.59	1.69	1.61	1-42	1-37	1-29	1.52	1.62	1.55	1.46
PERFORMANCE / GEAR	0 / 38	0 / 38,	0 / 38	0 / 33	0 / 33	0 / 38	0 / 38	0 / 38	0 / 38	0 / 36	0 / 38
D. G. L. D. G. V.											
POLLOCK	5.0	39-0	52.6	3007.3	482.3	625-1	3110.3	2093.7	1537.4	67 • 8	1-1
PAC COD	3-2	9-1	56.7	105.0	35.2	21.8	5 C • 9	86.3	34.3	24.5	9.5
PAC DC PERCH	C - 0	C-0	0.0	0-0	0.0	0.0	0.0	C - O	0.0	0.0	0.0
CTHER ROKFISH	. 6-0	0.0	0.0	· '0.0	0.7	0-0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HERRING	0.0	0-1	c. 0								
				: 0-0	C - 3	0-0	0.0	0.0	0-0	0_0	0.0
ATKA MACKEREL	0.0	0.0	G- 0	0.0	0.0	0-6	0.0	0.0	0.0	0.0	0-0
SCULPINS	1.8	8.6	2.7	0.0	.14.7	3-6	0.0	0.0	0.0	2.5	0 • 0
EELPOUTS	(.)	0.0	0.0	0.0.	C.O	0-0	0-4	0.3	6.4	1 - 4	0 - 2
OTHER ANDFISH	C - 1	0.1	0.2	0.0	1.1	0.0	1.8	0.0	0.3.	9.2	0.2
TOT ROUNDFISH	10.1	55.9	112.2	3115.3	536.3	650.5	3163.3	2180.4	1578.3	a7.3	2.0
		,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		313003		23.003	0.43	
YELLOW SOLE	556.6	295.3	156.0	387-1	2286.2	161.9	143.6	70-€	510.8	250.8	335.2
ROCK SOLE	29.0	61.7	59.4	121-3	1388.1	103.4	110.3	70-6	83.9	19.1	0.7
	24.5				131.2						
FLATHEAD SOLE	_	47-2	83.0	49-8		11.3	30.6	33.0	96-6	52.7	3 • 1
ALASKA PLAICE	49.9	73.9	93.4	38-2	9.1	9.0	3.9	17-3	49.5	102.1	222-1
GREENLAND IST	C.0	0.0	0.0	0.0	0-0	0-0	C- O	0.0	0.0	0-0	0-0
ARRONTOSTH FL		0.0	5.7	15.0	0.7	31.3	40.3	3.9	0.0	0.40	0•ύ
PAC HALIBUT	C-0	21.7	29.9	13.8	0.0	20.0	29.2	2.4	0.0	2.5	13.2
OTHER FLIFISH	4.5	0.0	3.6	1.7	25.5	3.6	19.4	5-8	0.3	0.0	0.0
TOT FLATFISH	664.5	504.8	435.9	627.0	3840.9	331.6	427.2	203.7	741.0	426.6	650.2
101 TEATT 13M	604.3	304.0	43767	0L. •0	3.40.7	33140	46146	50301	741.0	42040	0000
SKATES	0.0	6 . 8	9.1	1.7	34.6	41.7	42.0	70-6	12.7	9-2	13.6
TOT ELASMORA	0.0	5.8	9.1	1.7	34.5	41-7	42.0	70.€	12.7	a . 2	13.5
. E. EENGHOEN		,	,••		3103	,,,,,	4	1000	1.4.	• -	1,763
RED KING CRAS	5.0	3.6	84.6	56.5	5.0	0.0	0.0	0.0	0_0	0.0	0.0
BLUE KING CRAB	c.0	0.0	C• 0	0.9	0.1	0.0	C- 0	0.0	0.9	0.0	0.0
TANNER - BAIRDI	9-1	6.4	4.7	27.2	9.9	7-7	17.7	14-6	6.0	3 - 9	0-1
TANNER, OPILIO	13.2	11.2	7.0	6.8	1.1	1.8	10.4	9-6	72.6	5.7	17-ņ
TANNER, HYBRED	1-1	0-1	C.0	0.0	0-7	0.0	C.0	0.0	0-0	0.0	0_0
UTHER CRAB	24.4	5.5	10.1	47-4	33.4	3.7	27.2	195.7	43.0	11.7	3.4
SNAILS	59.3	5 . 9	4.0	13.4	18.6	1.7	19.4	165.3	92.5	56-8	35.3
SHRIMP	0.1	0.0	n. 0	0.0	0.4	0.0	0.2	0.0	0.0	0 - 3	0.2
STARFISH	24.9	13.2	10.0	23.3	256.9	45.0	12.2	0.0	0.0	. 0.0	12.9
			C-0			-					
SCU ID	C-0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OCTOPUS	0.0	0.0	0.0	0.0	0.0	0-0	0.2	C - O	0.0	0.0	_ 0 ~ ċ
STHER INVERTS	57.7	51.8	36.9	95.9	26.2	15.2	72.5	134.8	42.5	10.6	5 1. 5
TOTAL INVERTS	154-9	97.5	157.2	276.5	350-4	71-0	158.8	519.9	136.6	88-9	120.5
	_	_	_	_	_	_	_	_	_ =		
OTHER	0.0	υ - υ	0.0	0.0	0.7	0.0	0.0	0.0	0-0	0.0	0.0
IOTAL CATCO	966 5	£66 •	711 5	4020 4	1767 7	1041 -	790. 7	2071 -	7519 7	611 0	706 7
TOTAL CATCH	869.5	666.1	714.5	4020.4	4762.7	1094-9	3791.3	2974.6	2518.7	611-0	796.3

HAUL #	34	35	36	37	33	39	4 0	41	42	4 3	44 -
HONTH/DAY/YEAR	6/17/84	5/13/84	6/18/34	6/13/84	6/19/84	6/18/84	6/19/84	6/19/84	6/19/84	6/19/84	6/29/84
LATITUDE START	57 19.1	57 39.9	57 58.9	58 19.3	58 39.1	58 59.8	59 19-8	59 20-2	59 39.2	59 39.9	59 39.8
LONGITUDE START	164 0.0	164 0-0	164 0.3		164 0.5	164 0-1	164 1-0	165 17-7	165 55.8	166 35.2	167 14.8
LATITUDE END	57 20.4	57 41.4	58 C.6	53 21.1	59 40.8	59 0.3	59 18.7	59 20-5	59 40-1	59 40.C	59 38.5
										166 39.3	167 16.5
LONGITUDE END	164 0.3	163 59.5	164 1.0		164 0.5	154 0.6	164 3-3	165 20-9	165 5%-3		
LORAN START	33801-40	33660.90	33533.70	33378.50	33218.00	31047-40	32859-90	3301 8.30	32901-00	32971-50	33044-40
LORAN START	47662-90	47645.30	47527-40	47500.40	47571-40	47535.50	47502.80	47941-00	4:091-60	48297-70	47483-6C
LORAN END	33793.60	33655-60	33523.50	33366.80	3 32 04 - 00	33035.90	32874.50	33022-50	32c97-10	32976-30	33061-30
LORAN END	47653.90	47641-10	47629.80	47602.60	47558.50	47535.90	47517-70	47957-90	48101-90	48312-90	48502.00
GEAR DEPTH	33	27	25	22	19	15	10	11	14	15	16
DURATION IN HOURS	C-50	0.50	0.50	0.50	0.51	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	1.38	1.49	1.68	1.75	1.65	1.45	1-57	1-65	1.50	1.57	1-50
PERFORMANCE / GEAR	0 / 38	0 / 38	0 / 38	0 / 38	0 / 33	0 / 38	0 / 38	0 / 38	0 / 38	0 / 38	0 / 38
LEWIDSHWACE & GENS	0 / 10	U / J 0	0 / 30	0 / 33	0 / 33	0,7 30	0 / 3 0	0 / 30	0 / 35	0 / 30	u , 35
POLLOCK	39.0	81-1	8.6	28.3	0-1	0.1	0.7	0-1	0-1	2.5	<u> </u>
_								_			
PAC COD	12.2	22.5	51.3	34.9	41-1	107.9	3.6	39.0	63.0	195.4	71.7
PAC OC PERCH	C-3	0.0	C • 0	0.0	0-3	0.0	0-0	0.0	0.0	0.0	0.0
OTHER ROKFISH	C • C	0.0	0-0	9-0	0.0	0.0	0-0	C- 0	0.0	0.0	0 - 0
SABLEFISH	0.0	0• 0	0.0	0.0	0 • 0	0.0	C • O	0.0	0.0	0.0	0.0
PAC HERRING	0.0	0.0	0.0	0-0	0.7	0.0	0.0	0.5	0-0	1-4	l.º
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SCULPINS	0.0	2.5	4.2	53.3	76.3	25.0	0.6	40-8	14.9	19.3	57.4
EELPOUTS	°-5	0.0	c.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0
	_										-
OTHER RNDFISH	C. 9	2.7	1.2	1.6	1-4	4.7	12-6	10-1	3.8	10-1	?4.6
TOT ROUNDFISH	52.6	168.8	65.3	168-1	118.9	137.7	17-4	90.5	81.9	229.6	191.3
YELLOW SOLE	561	960.8	392.9	1263 7	1994.1	936.4	253-1	494-0	210 6	169.6	247.2
	561.1			1258-3	· · · · · · · · · · · · · · · · · · ·				140-5		
ROCK SOLE	20.4	129.2	38.1	97.9	210.9	160-9	0.0	30-4	8-6	11.3	13-1
FLATHEAD SCLE	12-7	17.2	4.1	0.0	0.2	0.0	C • 0	0.0	0.0	0.0	0.0
ALASKA PLAIÇE	77.1	44.0	23.6	39-1	286.5	118.9	10-4	9.5	5.0	4.1	124.3
GREENLAND TOT	C.O	0.0	0.0	0.0	0.0	0 - ū	0-0	0.0	0.9	0 - 0	0.9
ARROWTODIH FL	0.0	0.0	0.0	0.0	0-2	0.0	0.0	0-0	0.0	0_0	0.0
PAC HALIBUT	0.0	0.0	C.0	0.0	3.1	4.9	0.0	3. 0	0.0	20.5	4.9
OTHER FLTFISH	0.0	0.0	2.3	1.1	17.2	71-3	7-3	15.9	6.4	13.4	10.7
TOT FLATFISH	671.3	1151.2	450.8	1 406. 4	2497.9	1291-6	270.8	552.7	160.6	224.0	405.2
101 12411 2311	0.163	11710	1200	2 10 02 1	247107	12710	2.00	,,,,,,	10,,10	22.00	10366
SKATES	8.2	5.2	4.5	0.0	11.3	0.0	0-0	0.0	0.0	0.0	0.0
TOT ELASMOBRA	8.2	5.2	4.5	0.0	11-9	0.0	C- 0	C-0	0.0	0.0	0.0
•											
RED KING CRAS	C.0	0.8	c.0	10.4	5.7	0.0	0.0	0.0	0-0	0.0	2 - 8
BLUE KING CRAB	C.0	0.0	0.0	0.0	0.0	0.0	0.0	0 - 0	0.0	0_0	0.0
TANNER, BAIRDI	2.0	0.2	0.1	0.0	0.0	0.0	C-0	0.0	0.0	2.0	0.0
TANNER, OPILIO	17.5	0.6	0.3	0.1	0-0	0.0	C - O	0.0	0.0	0.0	0.0
TANNER, HYERIC	C-0	0.0	0.0	0.0	0.7	0.0	0-0	0.0	0.0	0.0	0.0
										1.7	
OTHER CRAB	94-4	454.2	60-5	22.4	15.8	20.3	11-4	7.9	1.6		7.8
SNAILS	12.7	345.9	68.9	29.1	2.5	0.0	C• 0	1-4	0.0	0.0	0.5
SHRIMP	C - O	0-4	C - 3	0.2	0.1	0.2	1 - 3	0-0	9-1	0.3	0.2
STARFISH.	15.4	44-1	95.3	227.3	497.4	536.5	77-1	73.5	157.9	5 5 • €	113.4
20019	0.9	0.0	0_0	0.0	0.7	0.0	0.0	0-0	0.0	0.0	0 - 0
OCTOPUS	C•Ó	9.9	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0
OTHER INVERTS	96.0	334.4	30.2	10.9	11-5	2.0	0.7	4. 6	4.2	1.0	0.7
TOTAL INVERTS	238.1	1120.5	255.9	300.6	533.2	559.3	90.5	87.4	163.9	53.7	120.3
- Service - Service City	23011	* * * · · ·	, ,	30.00	73	32,0	, , , ,	3.34			
SENTO	0.0	0-0	c. 0	0.0	0.1	0-0	0.0	0.0	0-0	0.0	0.0
TOTAL CATCH	970.2	2516.6	786.6	1875.2	3161.9	1988-5	378.7	7 30. 6	406-4	512.3	715.9

11,

Table A-2. --Station and catch data for the chartered vessel Alaska (cont'd).

		*									
HAUL #	58	5 9	7)	71	72	73	74	7.5	7 5	77	<i>7</i> 9
MONTH/DAY/YEAR	6/29/84	6/29/94	6/30/34	5/30/84	6/30/84	6/30/84	7/ 1/34	7/ 1/34	7/ 1/84	7/ 1/64	7/ 2/84
LATITUDE START	56 19.3	56 (9.4	56 59.3	57 19.6	57 38.9	57 59.0	53 18.9	58 39.0	58 58-9	59 13.7	59 19.4
LONGITUDE START	166 25.1	165 26.0	166 27.9	166 28.8	166 30.0	166 31-3	166 33.6	166 33.9	166 35.0	166 35.3	167 56.5
LATITUDE END	56 20-3	56 41.0	57 0.7	57 21-1	57 40.3	59 0-4	58 20.5	58 40.6	59 C.4	59 20.1	59 17.6
LONGITUDE END	166 25.8	166 25.7	166 28.8	166 28.9	166 30-5	166 32-1	166 33 3	166 33.6	166 34.6	165 35.4	167 56.6
<u>-</u>	34548.20			-			-				
LORAN START		34467.00	34372.90	34253-30	34121-00	33965-60	33796.50	33605-70	33407.30	33202.80	33355.10
LORAN START	48632.90	48651.90	48654.60	48656.50	48636.40	48602-60	48563-40	48502.30	48440-40	46316.26	48773.80
LORAN END	34544-70	34456-90	34367-90	34243.70	34112-70	33956.00	33780-50	33589.90		.33187.90	33374.90
LCRAN END	48638.80	49650-80	48670-19	48555.60	49638.30	48604.40	48556.70	48495-40	48433-00	43372.00	48797.20
GEAR DEPTH .	57	47	4 1	3.3	37	34	25	22	13	15	21
DURATION IN ADURS	0-50	0.50	0.50	0.50	0.50	0.50	0-50	0.50	0.50	0.50	9 • 50
DISTANCE FISHED	1.55	1.59	1.51	1.52	1.43	1.50	1-65	1.54	1-47	1-42	1.71
PERFORMANCE / GEAR	0 / 38	0 / 38	0 / 38	0 / 38	0 / 33	0 / 38	0 / 38	0 / 38	0 / 33	0 / 38	0 / 39
	• • • •	• , • •	0,00	• . • •			• . • .			0 . 20	U , 3,
POLLOCK	3578.1	107.5	5.9	22.0	33-1	23-9	20.4	5.5	29-3	5.9	51.ŝ
PAC COD	15.7	61.7	30.7	54.2	73.9		57.6	29.8	91-1		
-						116.5				24.8	67.7
PAC OC PERCH	0.0	2.0	C-0	0.0	0.0	9-0	C-0	0.0	ō•ũ	0.0	0-0
OTHER RCKFISH	C • 0	0.0	0.0	.0 • 0	0.0	0.0	0.0	0.0	0-0	u*0	0 • 0
SABLEFISH .	C. 0	0.0	0.0	0.0	0.0	0 - 0	C • 0	C - O	0 -)	0.0	0.0
PAC HERRING	C • O	0.0	. C . C	0.0	0.0	0.0	C. 0	0.0	19.5	^ • 1	11.?
ATKA MACKEREL	C _ 0	0.0	0-0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0
SCULPINS	22.0	2.3	1.5	3.4	4 - 1	14-6	4.5	8.8	99-1	1.5	28.1
EELPOUTS	1-3	0.5	1.0	0.5	0-0	0.0	0.0	0.0	0.0	0.0	0.0
CTER RNDFISH	Ç. 9	0.1	0.0	0-2	0.1	1.0	1. 4	1.6	15.8	15-1	8-2
	3517.2	172.0	39.1	80.2	111-2				245.9		
TOT ROUNDFISH	371100	11 6 4 17	37-1	00.2	111-4	156 - I	54-4	45.8	-4347	119.4	166.9
VELLOW COLE		101 1	100 2	10(1	157 A	1110 1	762 0	1171 .	(42.2	1.55	
YELLOW SOLE	15.7	194.1	489.2	495-4	357-9	1449.1	362.0	1174-8	512.2	165.3	. 501.4
ROCK SOLE	C.6	23.6	17-3	6.9	5-0	16-5	22.7	50.8	90-1	45.3	69.9
FLATHEAD SCLE	66.1	124.3	22.9	5 • 5	5.4	5.3	0.1	1.1	0.0	0.0	1.3
ALASKA PLAICE	6.3	11.3	122.3	111-7	143.3	284.0	62.1	36 .4	111-0	93 . 5	104.3
GREENLAND TOT	C - O	0.0	0.0	0.0	0 - 4	0-0	0.0	C = 0	6.0	0.0	0.0
ARROWTOOTH FL	23.6	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.7	0.0	0.0
PAC HALIBUT	0.0	0.0	C - 2	2.4	0.1	0.0	0.0	3-6	13.3	12.E	0 - 0
OTHER FLTFISH	15.7	0.0	0.0	0.0	9.0	0.0	1.4	1.6	17-3	13.4	1.5
TOT FLATFISH	128-2	353.3	651-5	622.8	512.0	1756-0	448.3	1268.3	844.4	328.7	779-4
101 12411 1311	12: • C	33363	03143	022.63	712.0	1.3040	446.3	120043		300.	
SKATES	0.0	5.0	25.3	0.0	2.7	0.0	7.3	3.3	6.3	4.5	4.0
TOT ELASMOERH	0.0	5. 0	25.3	0.40	2.7	0-0	7.3	3. 3	6 • ₹	4.5	4.0
BEO 4440 BB40			• •	• •		• •	3 4			2.0	_
RED KING CRAD	0.0	0.0	0.0	0.0	0.0	0.0	3.6	1-8	0.0	0.0	2.7
BLUE KING CRAP	C-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANNER, BAIRD I	2.9	4 • 1	2.4	9.3	0.1	ე• 1	0.0	0.0	0.0	0.0	0 - n
TANNER, OPILIO	4.5	3.4	97.2	133.0	228.9	23.2	1-1	9.1	C-0	0.0	0 - 1
TANNER - HYBRID	C-1	0.0	0-1	9.7	0.0	0.0	0.0	0-0	0.0	0.0	0.0
OTHER CRAB	12.5	67.4	14.9	160.5	40.1	246.2	57.0	8.2	8.0	4.9	49_4
SNAILS	27.1	139.9	108.0	212.6	65-8	600.9	39.9	20.4	4.5	1 - Ć	39.3
SHRIMP	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.2	0.5	0.2	0 - 3
STAPFISH	28.3	35.3	144.5	75.2	44.3	81.3	47.2	410.5	314-2	113-0	337.1
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SOUID										-	
CCTOPUS	C-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	2-0	0-0
OTHER INVERTS	10.0	3. 3	43.9	190.3	29-:	764.4	30-1	30-1	2.8	1 - 2	5.4
TOTAL INVERTS	93.6	25 % 4	411-1	764-4	408.5	1316.1	179.0	471-4	330-1	119.3	449 - 4
OTHER	• •	0.0	0 0		• •	^ -				2 2	• •
OTHER	C-0	0.0	0.0	0.9	0.3	0.0	0-9	0.0	0.0	0.0	0.0
TOTAL CATCH	3939.0	788.3	1127-1	1467.5	1034-4	3229.2	719.0	1788.8	1426.6	571.9	1399.7
TOTAL GRICH	3/3/40	.⊍.•ડ	A 4 L T = 1	* 4014	103444	255345		1.00+0	1.2000	J. 14.)	F 3 7 4 6 3

TOTAL CATCH

2307.0

2190.8

2242.3

679.5

1504.7

995.6

720.5

428.1

520.9

1496.4

772.1

Table A-2.--Station and catch data for the chartered vessel \underline{Alaska} (cont'd).

		-									
HAUL #	90	91	92	93	94	95	95	27	99	100	101
MCNTH/DAY/YEAP	7/ 8/24	7/ 3/04	77 8734	7/ 5/54	7/ 3/34	7/ 9/84	7/ 9/14	7/ 9/84	7/ 9/84	7/10/94	7/10/84
LATITUDE START	55 20.8	55 40.0	55 6C.9	56 19.3	56 39.0	57 10.1	57 10.6	57 29.4	57 41-1	57 49.7	57 59.8
LONGITUDE START	167 32.3	167 34.8	167 36.4	157 39.3	167 39.8	169 19.3	169 1.8	169 12.4	169 1.5	169 22-7	169 4-5
LATITUDE END	55 2C-9	55 40.7	56 1.2	55 20.6	56 40-1	57 9.5	57 19.0	57 3C.7	57 42.5	57 50.6	58 0.7
LONGITUDE END	167 30.2	167 32.8	167 34.5	167 33.9	167 38.7	169 16.7	169 4.4	159 13.0	169 1.6	167 24.3	159 2-4
LORAN START	34 87 E . 00	34854.60	34319.40	34777-90	34711.10	18744-10	34792.90	34739-10	34591.50	34556.70	34400.50
LORAN START	49931-00	48995.30	49052-49	49109.00	49133-60	49807.20	49676.10	49711-10	49596.00	49670.60	49519.40
LORAN END	34 87 3.10	34343.40	34811-50	34772.50	34703-09	18785.20	34799-30	34728-00	34577-50	34550-20	34386.20
LORAN END	48919-10	48935.90	49044.10	491 03 - 30	49132.60	49789-10	49592.10	49709-10	49590.00	49673-80	49504.70
GEAR DEPIH	82	75	74	72	5 3	4.0	40	38	37	3.6	39
DUFATION IN HOURS	0.50	0.50	0.50	0.50	0.50	0-50	0.50	0-50	0.50	0.50	9.50
DISTANCE FISHED	1.22	1.32	1.59	1.35	1.27	1.59	1-44	1.41	1.41	1.26	1 - 34
PERFORMANCE / GEAR	0 / 38	0 / 38	0 / 38	0 / 38	0 / 38	0 / 38	0 / 38	0 / 38	1 / 39	0 / 38	0 / 38
Tem ompanoe , dem	0,30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 . 3.,	0,33	0, 3.	0,230	0,30	9 7 30	1 , 3	0, 30	0,30
POLLOCK	394.3	203.7	866_2	359.0	830.1	55-4	3.9.5	22.2	22.2	15.C	76.3
PAC COD	67.3	54.9	5.4	34.5	36.7	31-3	48.1	6.4	23.4	49.5	100.3
PAC DC PERCH	0.0	0.0	9.0	0.0	0.1	0.0	C- 0	0.0	0.0	0.0	0.0
OTHER ROKF ISA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0-0
SABLEFISH	21.3	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.9	0-0
	0.0	0. n	•	0.0	0.9	9.0		0.0	0.0		and the second s
PAC HERRING			0.0				0.0			0-0	0-0
ATKA MACKEREL	C+0	0.0	0.0	0.0	C.3	0.0	0.0	C-0	0.0	0.0	0-0
SCULPINS	0.4	0.8	0.7	29.3	102.5	38.9	44-2	5-7	18.7	79.6	3.0
EELPOUTS	C - 8	1-0	0.4	2-1	0 - 4	0.0	0.0	0.0	0-0	0-0	0.9
CTHER RNDFISA	7.4	3.2	16.9	7.4	0.7	0.5	0.9	0.3	0.5	2.4	1-0
TOT ROUNDFISH	491-5	268 . 5	889.6	430 - 3	969.5	126.1	132.6	34.€	64.7	144-4	181.5
VELLOU COLE	0 0	0.0	0.0	0.0	17 1	186-0	153.3	219.5	268.9	525.0	077
YELLOW SOLE	C+0		0.0		17-1	-					934-1
RCCK SCLE	C•0	0.0	C.O	9.2	1.0	103-8	73.3	83.5	31-6	45.7	16.5
FLATHEAD SOLE	59.3	41-0	139-4	75.1	15.1	27.2	2.5	9.1	7.7	1 - 3	9.0
ALASKA PLAICE	C • 0	0.0	0.0	0.0	6.3	78.5	1 2 • 2	140.6	122.7	114.C	259.0
GPEENLAND TRI	20.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9 . C	0-0
ARROWTOOTH FL	24.0	25.4	130.3	54.0	7.5	1-5	0.1	C • O	0-0	0-0	0-0
PAC HALIBUT	C • 0	5.2	5.9	0.0	0.0	0.0	0.0	0.0	0.9	. 0-6	0-0
OTHER FLIFISH	22.4	17.5	38.6	16-4	15.4	7.1	0.0	0.0	0.0	0 . C	0.0
TOT FLATFISH	126.6	91.1	365.2	145. 6	63. 5	404.2	241-4	452.7	430-9	685-1	1216.6
SKATES	33.7	42.2	26.5	60.9	96.0	12-1	1.8	2.7	16-4	35-1	26.9
TOT ELASHOBRA	33-7	42-2	26.5	60.8	96.0	19.1	1. 9	2.7	16.4	35.1	25.9
TOT LEASING NA	3341	4 (-4).	20.5	00.5	9040	11	1.	2.00	10.4	32.1	. 3 . 7
RED KING CRAB	C - O	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0-0	0.0
BLUE KING CRAB	C • 0	0.0	0.0	0.0	0.9	18.4	5.7	0.9	0.7	1 - 4	2.4
TANNER, BAIRDI	43.5	25.2	12.4	5 - 1	C-1	1.0	1.5	0.1	0.2	0.2	0 - 1
TANNER, OPILIO	5.0	1.4	3.4	41.0	12.7	21-5	19.1	11.0	137.5	70.€	104_0
TANNER, HYBRIC	C.9	2-1	C. 1	0.0	0.0	0.0	0-0	0.0	0.0	0.0	1.2
OTHER CRAB	4.5	4.7	13-2	24.5	140-1	23-1	23.5	24.3	28.0	194-3	123.3
SNA ILS	7.4	5.6	19.1	19.4	84 - 1	0.8	5.9	C-0	77.6	237.0	30.1
			C. 0	0.0	0.1	0.1	0.0	0.1	0-0		0-0
SHRIMP	C - 1	9-1			_	80.6				0.0	
STAPFISH	0.0	0.0	0.0	0.5	14-5		6.0	4.3	58.5	58-4	37.7
50010	C.2	0.0	0.0	2.0	0.0	0.0	0-0	0-0	0-0	0-0	0-0
OC TOPUS	C - 0	0.0	C. 0	0.0	ŋ . ŋ	n- 3	0.0	0.0	0.0	0.0	0.0
OTHER INVERTS	215.3	37 - 8	37-3	20.4	9.4	515-6	66.6	30-8	162.3	198.1	23-1
TOTAL INVERTS	276.9	75.9	84.5	101.8	261-1	661.4	128.3	71.5	457.8	679.9	37 1 . 8
OTHER	C • 0	9.0	0.0	0.0	0.0	9-0	0.0	0-0	0.0	0.0	0.0
TOTAL CATCH	928.6	477.7	1365.9	· 739-5	1390.2	1209.9	504-2	561.5	969.3	1545.5	1798.9

Table A-2.--Station and catch data for the chartered vessel Alaska (cont'd).

-HAUL #	102	16.7									
MONTH/DAY/YEAR	7/10/94	103 7/10/04	104 7/10/84	105	105	107	108	109	110	111	112
LATITUDE START	58 19.5	58 39.5	58 59.9	7/11/84	7/11/84	7/11/84	7/11/84	7/12/84	7/12/84	7/12/84	7/12/34
LONGITUDE START	169 7-4	169 9.6		59 19.7	59 39.7	59 59-4	60 19.9	50 18-2	60 0.9	59 40-3	5 9 20-8
LATITUDE END	58 21.1	_	169 11-1	169 14.5	169 16.5	169 19.5	169 20-3	170 38.2	170 37.7	170 35-2	170 32.7
LONGITUDE END		59 41-3	59 1-6	59 21.2	59 41.1	60 0.9	60 21-5	60 16.7	59 59-4	59 38-6	59 19-3
	169 7.8	169 10-2	169 11-1	159 14.4	169 16.2	169 20-2	169 19.9	170 37.9	170 37-1	170 35.4	170 32.6
LORAN START	34181.60	33951-40	33709.20	33475-10	33234-20	32997.50	32748.70	32840.40	33049.40	3 3298. 30	33534.40
LCRAN START	49425.60	49322.70	49213.30	49117.40	49016.30	48923.90	48323.10	49078-50	49168-90	49275-30	49379-50
LORAN END	34165-30	33931.10	33689-10	33456.50	33216-50	32980.70	32729.00	32858-30	33068-10	33518.70	33552.50
LORAN END	49419.50	49315.10	49203-80	49108.50	49007-80	48919-00	48814.10	49085-50	49175.80	4 9285.20	49387 - 80
GEAR DEPTH	37	35	29	27	25	25	24	34	36	.i6	37
DURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0-50	0.50	0.50
DISTANCE FISHED	1-44	1.61	1.57	1.52	1-44	1.49	1.60	1-56	1-60	1.58	1.50
PERFORMANCE / GEAR	0 / 38	0 / 38	0 / 38	0 / 38	0 / 33	0.7 38	0 / 38	0 / 38	0 / 33	0 / 38	0 / 38
										. ,	• . ,
PCLLOCK	50.4	24.2	24.0	106.8	20-4	32.8	0-6	0.1	0.2	0-1	10.3
PAC COD	47.6	63•2	50-7	207-1	33.4	37-5	0.0	0.0	0.0	0-0	37-1
PAC_OC PERCH	C • 0	0.0	0.0	0-0	0.0	0.0	0_0	0-0	0.0	0 . C	0.0
OTHER ACKFISH	0.0	0.0	C • O	0.0	0.0	0.0	0 • 0	0-0	0.0	9-0	0-2
SABLEF ISH	0.0	0.0	0.0	0.0	0.0	0.0	ŏ . o	0.0	0.0	0.0	0-0
PAC HERRING	0.0	0.0	C- 0	0.2	0.5	0.0	C • 0	0.1	0.1	2-1	0.7
ATKA MACKEREL	C.O	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0-0	0-0	0.0
SCULPINS	65.8	19.9	e. 3	3.9	34.2	34-1	91.2	31-3	56.7	41-3	19.5
EELPOUTS	0.0	0.0	0.0	0.0	3.6	4.0	0.0	9-4			
CTHER KNDFISH	1.2	0.7	2.1	1.1	0.9	1.0	4.1	3.0	71.2 1.3	38.6	13 •7
TOT ROUNDFISH	165.0	108-0	95-6	319.0	92.9	109-3	95.9			2.4	9-4
			,,,,,	31740	72.07	107. 3	7347	42.9	129.5	32.4	~ 2 • ?
YELLOW SOLE	1103.2	520.5	540.3	358.3	246.4	234.1	647.5	54.9	139.5	120.7	599.4
ROCK SOLE .	5.6	43	32.0	35.6	5.8	13.4	2.0	C-1	0-4	2-3	0.2
FLATHEAD SCLE	17.2	5. 6	0-0	0.6	0.1	0.0	0.0		0.0	0.0	= :
ALASKA PLAICE	214.2	492.6	677.7	358.0	422-3	77.6	100-2	0-0 115-2			1.7
GREENLAND TET	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	135.6	61-7	35.0
ARROWTOOTH FL	0.0	0.0	C.0	0.0	0.0				0.0	0-0	0-0
PAC HALIBUT	0.0	3.8	0.0	3.3	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0- <i>0</i>
OTHER FLIF 154	0.4	2.3	4.0	7.0	_		0.0	0.0	0.0	0- 0	0.7
TOT FLATFISH	13 40 - 6	1027.6	1254.0		10.2	13.8	3.3	2.7	5.0	12-2	8.3
101 12411 2011	134610	1029.0	1234.0	802.9	684.7	338.9	753.0	173-0	25 0 . 7	194.9	725 -1
SKATES	0.0	7.4	0.0	35.6	7.3	0.0	0.0	0_ 0	2.7	0.0	3.9
TOT ELASMOBRA	0.0	7 - 4	0-0	35.6	7.3	0.0	0.0	0.0	2.7	0.0	
-					, • •	• • • • • • • • • • • • • • • • • • • •	0.0	4.0	L - 1	0.0	3.9
RED KING CRA3	0_0	0.0	0.0	0.0	0	0.0	1-4	0.0	0_0	9-0	0.0
BLUE KING CRAB	2.0	0.0	0.0	0.0	0.7	0.0	0.5	0.0	0.0	0.0	0.0
TANNER, BAIRDI	Ç-0	0.0	0.0	0.0	4 0.0	0-0	0.0	0_0	C-2	0-0	0.3
TANNER, OPILIC	14.6	11.3	0.6	0.9	1.9	2.0	0.5	90.5	59-1	37. C	54.9
TANNER, HYBRID	0.5	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2	0.0	0.0
UTHER CRAS	85.7	18.4	366.7	68.3	102-5	146.8	109.0	3.7	3.3		
SNAILS	86.1	136.5	219.0	149.7	130.3	182.4	105.6	18.4		5.4	11.5
SHRIMP	0.0	0.0	0.0	0.0	0.0	0.1	0.2		17.0	23.0	79-5
STARFISH	32.9	60.1	107.3	85.3	95.9	109.4	152.9	0-1	0.0	0.0	0.0
SCUID	0.0	0.0	C-0	0.0	0.0			42-6	10.4	2-7	10-9
OCTOPUS	C_0	9.0	0.0	0.0	_	0.0	0.0	0.0	0.0	0.0	0-0
OTHER INVERTS	58.0	868-9	1365.9		0.1	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL INVERTS				125.4	70.1	163.6	70.2	3.4	1.6	3.7	5.6
THYEN IS	279.8	1155.2	2058.4	429.5	400.3	623.6	440.1	158.9	91.7	77.8	162.3
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
			, ,	550	0 • 0	0.0	V• V	V. U	6.0	ŋ . n	0-0
TOTAL CATCH	1785.4	2300-1	3398.1	1587.0	1185.7	1071-8	1288.9	374.8	474.7	357-1	1044.5

Table A-2.--Station and catch data for the chartered vessel Alaska (cont'd).

		• • •								. 77	. 7.
HAUL A	124	125	126	127	129	129	130	131	132	133	134
HONTHZDAYZYSAR	7/15/84	7/15/84	7/20/84	7/20/84	7/20/84	7/20/84	7/21/84	7/21/84	7/21/84	7/21/84	7/21/84
LATITUDE START	56 4C-3	56 20.6	56 40-1	56 59-1	57 19.2	57 39.5	57 59.4	58 19.3	58 39-3	58 59-4	59 19-1
L'ONEITUDE START	170 E.O	170 3.9	171 20.8	171 23.8	171 27+5	171 32-7	171 36-1	171 39.2	171 43-1	171 48.6	171 50 -1
LATITUDE END	56 38.9	55 19.2	56 41-4	57 0.6	57 20.7	5 7 40 - 6	58 C.8	53 2C.8	58 4C-9	59 0-5	59 20.5
LONGITUDE END	170 5-7	170 3.5	171 22-1	171 24.9	171 26.5	171 34-1	171 36.0	171 39.1	171 43.1	171 47-7	171 49.4
LORAN START	12548.70	18405-10	18197.50	18269.80	18287.90	18249.40	18197-00	13135.80	1 8058,20	17993.50	17937.30
LORAN START	50001.50	49900.60	50145.20	35004.40	34574.40	34698-10	34480-40	34259.30	34031-20	33798.90	33570-10
LCRAN END	18538-40	18395.30	18197.40	19268-00	18296.20	18239.90	18194-50	18132.90	18063.70	17993.10	17936.20
LORAN END	49993.90	49392-10	50150-50	34995.30	34866-60	34674.60	34465-90	34242-80	34012-80	3 37 81 - 60	33553-60
GEAR DEPTH	53	61	6.2	60	56	55	53	52	52	48	44
DURATION IN A CUPS	0.50	0.50	0.50	0.59	0-50	0.50	0.50	0.50	0 - 50	0.50	0-50
DISTANCE FISHED	1.42	1.50	1-53	1.54	1.54	1.36	1-38	1.50	1.61	1.55	1-47
	0 / 39		0 / 38	0 / 38			0 / 38	0 / 38	0 / 39	0 / 38	0 / 39
PERFORMANCE / GEAR	0 / 35	8 6 1 0	0 / 32	9 / 38	0 / 38	0,738	0 / 30	0 / 30	U / 35	U / 3C	U /) 5
POLLOCK	1926.7	5. 4	1993.5	272.6	2169.9	51.7	624.8	131.5	55.3	99.7	13.6
PAC COD	59.6	47.2	53-8	3.2	0.)	71-0	167-1	226.8	110.2	43.C	4.5
_						0.0		C. 0	0.0	0.0	0.0
PAC OS PERCH	C-0	0.0	0.0	0_0	0.3		0.0		-		
OTHER REKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0-0	G-0	0.0	0.0	0.0
SABLEFISH	C.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. c	0 - 0
PAC HERRING	C.0	0.0	0.0	0.0	3.3	0-5	2.0	2.2	0•0	0 - 0	0 - 1
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 - 0	0-0	ວູດ	0.0
SCULPINS	22.9	29.1	3.1	4.4	64.2	12-8	19.5	6.5	15.9	207.4	19.5
EELPOUTS	2.8	0.0	2.1	0.9	0.0	0.0	3.0	1.5	2.3	?.1	0.0
OTHER RNDFISH	34-7	9.4	. 0.0	17.7	0.4	0.1	0.1	0.3	0.1	2-1	0.4
TOT ROUNDFISH	2046.7	91-1	2052.5	302.9	2237.9	135-1	916.6	368.6	133.8	352.4	38.2
YELLOW SOLE	1-0	0.0	0.0	0.0	1.7	14 - 1	59.1	228.2	117-5	62. C	44.9
ROCK SOLE	12.5	0.0	0.0	2.0	3.3	1.6	21-4	18-8	47.6	1 - 6	0.7
FLATHEAD SCLE	101.2	62 .6	113-9	30.4	38 • 2	17 • 2	54.0	49_1	10.9	1 - 6	3.6
ALASKA PLAICE	2 - 8	0.0	0.0	0 - ŋ	0.7	17.2	42.8	96- 8	24 9 • 6	251.4	31.2
GREENLAND TBT	C • 0	0.0	0.0	2.3	2.?	0-0	5.6	5.8	3.4	?.1	0.0
ARRCHTOOTH FL	24.9	6. 9	60.1	11.8	10.7	2.3	12.2	19.5	0-1	9.0	0.0
PAC HALIBUT	7.6	15.3	15.4	31.7	3.3	4.8	4.4	21.0	0.0	· 0.0	0.1
CIBER FLIFISH	7.2	19.5	22.3	0.6	0.7	0.2	0_0	0.0	0.0	7.7	0.0
TOT FLATFISH	157.2	104.2	212.1	73.7	58.5	57 - 3	199.5	439.2	423-1	336.3	130.4
131 (211)	13174	10.00		- , -	2	2				•	
SKATES	97.1	70.3	111-9	0.0	21.6	8-5	159.0	27-4	8.5	15.3	r-9
TOT ELASMOBRH	97.1	70.3	111.9	9.0	21.6	3.6	159.0	27.4	8-5	16.3	0.9
RED KING CHAJ	C•0	0.0	6.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0-0
BLUE KING CRAB	C-0	0.0	ŋ - 0	0-0	0.0	0-0	C. 0	C- 0	4-1	0.0	0-0
TANNER, BAIRDI	. 26.9	18.8	23.8	19-1	4.5	0.5	1.3	1-1	0.0	6• 6	0 - 0
TANNER, OPILIC	4.2	0.0	56.5	85 .7	50.1	45.7	5 8 . 5	20.0	95.3	128.0	64.0
TANNER, HYBRID	C - 4	0.0	1.1	9.7	0.2	0.0	0.0	0.0	C = 0	0.0	0.0
UTHER CRAB	39.5	5.6	40.4	12.2	29.0	5.0	5.3	20.4	5.2	8.9	8 - 4
SNAILS	22.2	5.0	21.4	21.7	57.9	79.1	91.4	59.3	38.6	60.5	26.7
SHRIMP	C - 1	0_0	C-0	0.0	0.0	0.2	0.0	0.0	9-1	2.0	0.0
STARFISH	9.7	14.5	45.6	4.1	4.2	9.2	24.4	8 2 . 4	28-1	66.2	20.4
SauID	0.0	0.0	0.0	0.0	0.0	0. 0	c 0	0.0	0.0	0.0	0.0
CCTOPUS	C-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-1	9.0	0-0
						9.6		6.3			
OTHER INVERTS	5-4	16.4	5.4	12.5	10.9	_	2.3		1.0	32.9	1-1
TOTAL INVERTS	112.9	61.3	194-1	156.0	165.0	147-3	163.1	189.4	172.5	296.5	120.5
OTHER	c.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	. 0.0	0 - 0	0.0
TOTAL CATCH	2413.9	326.9	2570-6	537.6	2484.0	349.3	1 35 8. 3	1024.7	793.0	1001.5	230.0

Table A-2.--Station and catch data for the chartered vessel Alaska (cont'd).

MAIL FACE 115												
RENTMODATTIENS 7/22/94 7/22/94 7/22/94 7/22/95 7/23/95	HAUL #	135	136	177	138	132	140	141	142	143	144	145
LATITUDE STATE LATITUDE STATE LATITUDE STATE LATITUDE STATE LATITUDE STATE LATITUDE STATE STATE LATITUDE STATE STATE STATE LATITUDE STATE STATE STATE LATITUDE STATE STATE STATE LATITUDE STATE STA			_	_			-	-				
LORATIONS STAFT LATITUDE END 9 40.7 59 50.6 6 0.5 60 10.9 6 21.0 61 0.2 61 0.2 61 0.2 60 40.2 60 0.2 0.0 20.2 60 82.1 1.0 61 0.2 61 0				-	•						•	
LANTINGE END 59 40-7 59 50-6 60 0.5 60 10-9 60 21-3 51-3 51 61 0.2 61 0.1 50 39-6 60 0.2 60 2												
UNRATION 171 317 172 15-1 171 172 15-2 15-2 15-2 15-2 15-2 15-2 15-2 15-	_		_									
Common Start 17473-70 17763-70 17763-70 17712-00 17712							•	-			-	•
Death Start 33355-40 33221-60 32963-70 32963-70 3249-20 3249-20 32452-50 32652-50 32652-50 32652-50 3265-50 32658-60 LORAN END 17475-50						•						
LEARN SAU 1789 9-90 17767-20 17796-10 17716-70 17715-60 17735-60 17266-20 1729-70 1726-1180 17415-20 17425-75 108AN END 3338-30 32970-20 3295-												
Definition 10 33318.30 33204.90 33088.90 33088.90 32971.90 32351.30 32450.70 32650.20 32654.10 32272.30 32990.50									-			
GEAP DEPTH												
DUBLIGHT N ADUPS 0.50	_					-						
DISTANCE FISHED 1.43 1.50 1.40 1.57 1.41 1.57 1.28 1.77 1.43 1.67 1.41 1.57 1.28 1.77 1.43 1.67 1.41 1.57 1.28 1.77 1.43 1.67 1.43 1.67 1.41 1.57 1.28 1.77 1.43 1.67 1.43 1.67 1.41 1.57 1.28 1.77 1.43 1.43 1.57 1.41 1.57 1.28 1.77 1.43 1.43 1.57 1.41 1.57 1.28 1.77 1.43 1.43 1.57 1.41 1.57 1.28 1.77 1.43 1.41 1.57 1.41 1.57 1.28 1.77 1.43 1.41 1.57 1.41 1.57 1.28 1.77 1.43 1.41 1.57 1.41 1.57 1.28 1.77 1.43 1.41 1.57 1.41 1.57 1.28 1.77 1.43 1.41 1.57 1.41 1.57 1.28 1.77 1.43 1.57 1.41 1.57 1.41 1.57 1.28 1.77 1.43 1.41 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.5	*						_	•				
FERFORMANCE / GEAR 0 / 39 0 / 38 0 / 39 0 / 38 0 /											_	
POLLUCK 3.6 0.2 1.4 1.3 0.7 0.1 0.2 0.5 0.2 C.5 2.0 PAC COD C.0 0.1 0.9 0.5 C.1 0.1 0.1 0.2 0.5 0.2 C.5 2.0 PAC COD CRORD C.0 0.1 0.9 0.5 C.1 0.1 0.1 0.0 0.0 0.0 0.0 0.7 C.0 0.2 II.1 0.1 PAC COC PRICH C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	•					_		_				
PAC COP FRCH C.O. 0.1 0.9 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.1 PAC COP FRCH C.O. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	PERFORMANCE / GEAR	0 / 38	0 / 39	0 / .38	D / 39	0 / 38	0./38	0 / 38	0 / 38	0 / 38	0 / 38	0 / 38
PAC COP FRCH C.O. 0.1 0.9 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.1 PAC COP FRCH C.O. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DOLL OCK	7.6				,		• •		2.2		
PAC OC PERCH C.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0									_			
STHEER RCKFISH			_				_					
SABLEFISH C.O. 0.0 C.O. 0.0 C.O. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0									_			
PACHERRING C-1 0-1 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0					* 7				-		_	
ATRA MACKEREL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0				•								
SCUPINS 15.6 30.4 96.2 168.9 940.3 22.0 98.8 22.8 308.7 36.1 170.7 ELLPUUTS 7.0 5.9 2.7 1.8 0.0 10.4 17.9 9.5 0.0 0. 3.4 170.7 ELLPUUTS 7.0 5.9 2.7 1.8 0.0 10.4 17.9 9.5 0.0 0. 3.4 170.7 ELLPUUTS 1.0 1.8 1.5 0.3 2.9 3.6 3.5 3.3 1.4 7.0 1.5 10T ROUNDFISH 27.4 38-5 102.6 173.2 999.7 33.4 120.4 37.2 310.2 40.9 176.9 10T ROUNDFISH 27.4 38-5 102.6 173.2 999.7 33.4 120.4 37.2 310.2 40.9 176.9								•		-		
ELEBUIS 7.0 5.9 2.7 1.8 0.0 10.4 17.9 9.5 0.0 11.4 12.5 0.5 0THER RNDFISH 1.0 1.8 1.5 0.3 2.9 0.6 3.5 3.3 1.4 7.2 1.5 10T ROUNDFISH 27.4 38.5 102.6 173.2 999.9 33.4 120.4 37.2 310.2 48.9 176.9								C.9	-		0.0	0.0
OTHER RNDFISH 1-0 1.8 1.5 0.3 2.9 0.6 3.5 3.3 1.4 7.2 1.5 TOT ROUNDFISH 27-4 38-5 102-6 173-2 999.7 33.4 120.4 37.2 310.2 48.9 176.9 YELLGW SDLE 24-5 56-2 32.2 98.9 67.2 0.1 0.2 0.1 0.8 5.4 10.0 ROCK SOLE 0.1 0.5 0.7 0.2 0.7 0.7 0.0 0.1 0.0 0.0 0.0 0.0 FLAIMFAD SOLE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SCULPINS	15.6	30.4	96.2	168.9	940.3	22.0	98.8	23.8	308.7	35.1	177.7
YELLOW SDLE YELLOW SDLE Z4.5 56.2 Z2.2 99.9 70.7 70.7 70.0 70.7 70.0 70.7 70.0 70.7 70.0	EELPOUTS	7.0	5 . 9		1.8	0.0	10-4	17.9	9. 5	0-0	3.4	2.5
YELLOW SDLE YELLOW SDLE Z4.5 56.2 Z2.2 99.9 70.7 70.7 70.0 70.7 70.0 70.7 70.0 70.7 70.0	OTHER RNDFISH	1.0	1-8	1.5	0.3	2.9	9- 6	3.5	3.3	1.4	7.8	1.5
ROCK SOLE O.1 0.5 0.7 0.2 0.7 0.7 0.0 0.1 0.5 0.6 0.2 0.2 0.7 0.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TOT ROUNDFISH	27-4	38.5		173-2		33.4	120-4	37.2	310.2	48-9	176.9
ROCK SOLE O.1 0.5 0.7 0.2 0.7 0.7 0.0 0.1 0.5 0.6 0.2 0.2 0.7 0.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	VELLOU SOLE	24 5	F	7.0.0	22.2							
FLATHEAD SGLE ALASKA PLAICE 57.6 45.7 36.3 179.6 47.5 2.6 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		•										
ALASKA PLAICE 57.6 45.7 36.3 170.6 47.5 0.6 0.9 0.0 58.0 64.6 98.4 GREENLAND IBIT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.					_				_			
GREENLAND TBT	· · · · · · · · · · · · · · · · · · ·										_	
ARRONTODTH FL C - 2			45.7		179.6	47.5	J. 6	C-9	0-0	· 5 P • 0	64.€	98.4
PAC HALTBUT 0.6 0.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7							0-0	C. 0	0_0	0 - 0	0.0	0.0
OTHER FLIFISH 10.9 16.3 111 0.2 0.9 7.4 5.4 4.0 4.7 0.9 2.7 TOT FLATFISH 97.8 1119.7 70.3 269.9 115.4 8.9 6.5 4.3 73.6 71.7 1111.9 SKATES 2.3 7.3 1.8 1.1 6.3 0.0 0.0 0.0 4.1 5.7 1.6 1.1 TOT ELASHOBRA 2.3 7.3 1.9 1.1 6.3 0.0 0.0 0.0 0.0 4.1 5.7 1.6 1.1 RED KING CRAB C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		C = 3	0.0		-	0.0	0.0	0.0	0-0	0.0	0.0	0.0
TOT FLATFISH 93-8 119-7 70-3 269-9 115-4 8.9 6.5 4.3 73.6 71.7 111-9 SKATES 2-3 7-3 1-3 1-3 1-1 6-3 0-0 0-0 4-1 5-7 1-6 1-1 TOT ELASHOBRH 2-3 7-3 1-9 1-1 6-3 0-0 0-0 4-1 5-7 1-6 1-1 RED KING CRAB C-0 0-0 0-0 0-0 0-0 0-0 0-0 0-			0.0	C•)	0-0	0.0	0.0	C. 0	0-0	0.0	2.7	. 0.5
SKATES 2.3 7.3 1.3 1.1 6.3 0.0 0.0 4.1 5.7 1.6 1.1 TOT ELASHOBRA 2.3 7.3 1.9 1.1 6.3 0.0 0.0 0.0 4.1 5.7 1.6 1.1 RED KING CRAB C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OTHER FLIFISA	10.9	16.3	1.1	0.2	0.3	7-4	5.4	4.0	4.7	0.9	?7
TOT ELASHOBRA 2.3 7.7 1.8 1.1 6.3 0.0 C.0 4.1 5.7 1.6 1.1 RED KING CRAB C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	TOT FLATFISH	93-8	119.7	70.3	269.9	115.4	. 6.8	6.5	4.3	73.5	71.7	111.7
TOT ELASHOBRA 2.3 7.7 1.8 1.1 6.3 0.0 C.0 4.1 5.7 1.6 1.1 RED KING CRAB C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	SKATES	2 7	7 7	1 7	1 1	6 7	0.0	0 0		E 7	, ,	, ,
RED KING CRAS C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0										_		
BLUE KING CRAB C.0 0.0 2.7 5.3 2.9 1.8 0.0 0.8 4.5 17.7 4.5 IANNER, BAIRDI 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	131 ELASHOOM	2.3	7 - 7	le o	1-1	0.3	0.1.	0- 9	4-1	3• ℓ	1.0	1.01
TANNER, BATRDI 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0	RED KING CRAS	C-0	0.0	0.0	0.0	0.0	0.0	0.0	0- C	0-0	0.0	0-1
TANNER, OPILID 50.8 81.6 21.6 2.0 0.9 231.3 72.1 137.9 25.9 2.9 8.6 IANNER, HYBRID 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BLUE KING CRAB	C - 0	0.0	2 . 7	5.3	2.9	1 - A	0.0	0.8	4.5	17.7	4.5
TANNER, OPILID 50.8 81.6 21.6 2.0 0.9 231.3 72.1 137.9 25.9 2.9 8.6 IANNER, HYBRID 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0 - 1	0.1	0.0	0-0	0-9	.,	-				
TANNER, HYBRID C.O O.1 O.0 O.0 O.0 O.0 O.0 O.0 O	-											
CTHER CRAB 12.8 18.2 49.8 41.0 311.9 3.3 0.0 0.8 24.5 5.4 15.2 SNAILS SNAILS 39.6 29.3 47.2 13.3 77.9 1.9 0.0 0.0 0.0 13.0 3.4 10.3 SFRIMP 0.1 0.1 0.1 0.3 0.1 0.0 0.2 0.3 0.1 0.0 0.0 0.0 0.0 5TARFISH 26.8 18.1 23.8 29.2 28.7 9.3 1.1 1.4 4.9 5.2 6.4 5QUID 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			•									
SNAILS 39.6 29.3 47.2 13.3 77.9 1.9 0.0 0.0 13.0 3.4 10.3 SHRIMP 0.1 0.1 0.3 0.1 1.5 0.2 0.3 0.1 0.0 0.6 0.4 STARFISH 26.8 13.1 23.8 29.2 28.7 9.3 1.1 1.4 4.9 5.2 6.4 SQUID 0.0												
SFRIMP 0.1 0.1 0.3 0.1 1.1 0.2 0.3 0.1 0.0 0.6 STARFISH 26.8 19.1 23.8 29.2 28.7 9.3 1.1 1.4 4.9 5.2 5.4 SQUID 0.0 </td <td></td>												
STARFISH 26.8 19.1 23.8 29.2 28.7 9.3 1.1 1.4 4.9 5.2 6.4 50UID C.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		_							• •			
SQUID C=0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0									_			
OCTOPUS C.O 0.O 0.O 0.O 0.O 0.O 0.O 0.O 0.O 0.O 0								_	_			
OTHER INVERTS 1.3 1.5 9.9 26.2 425.7 13.8 0.0 0.9 7.3 109.0 48.5 TOTAL INVERTS 131.4 149-2 155.4 124.1 949.6 261.6 73.6 141.8 80.1 150.3 93.9												
TOTAL INVERTS 131-4 149-2 155-4 124-1 949-6 261-6 73-6 141-8 80-1 150-3 93-9												-
,					_							
	ISTAL THAFA12	131.4	149-2	133+4	1441	34 7 . 7	∠t1•5	1346	141-8	50.1	100.5	. 3 • 3
UTHER C.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OTHER	C • O	0.0	0.0	. 0.0	0.1	0-0	C. 0	0.0	0.0	ე. ი	0.1
TOTAL CATCH 254.9 314.7 330.1 568.3 1971.2 303.7 200.4 187.3 469.5 272.6 383.8	TOTAL CATCH	254.9	314.7	330.1	563.3	1971。?	303-7	200.4	187-3	469.5	27 2.€	383 . 8

Table A-2.--Station and catch data for the chartered vessel Alaska (cont'd).

HAUL #	146	147	148	149	150	151	152	153	154	155	156
MONTH/DAY/YEAR	7/24/84	7/24/84	7/24/84	7/24/84	7/25/84	7/25/84	7/25/84	7/25/64	7/25/84	7/26/84	7/26/84
LATITUDE "START	60 1-0	59 50.4	59 40.9	59 30.9	59 21.5	59 0.6	58 40.8	59 20.9	58 1.0	57 41.3	57 20.9
LONGITUDE START	173 17.8	173 34.7	173 13-8	173 29.9	173 10.3	173 5.1	172 59.8	172 56.0	172 51.3	172 46.5	172 42.9
LATITUDE END	59 59.5	59 49.0	59 39.4	59 29.4	59 19.9	58 59.1	58 39.4	59 19-7	57 59.5	57 38.7	57 19.4
LONGITUDE END	173 18.1	173 34.7	173 13.2	173 29.3	173 10-1	173 5-4	172 59.5	172 55.8	172 51.5	172 45.9	172 42.1
LORAN START	17503.70	17449-10	17551.00	17495.70	17593-30	17649.40	17700-60	17741.30	17779.20	17805.00	17807-70
LCAAN START	33082.70	33191-70	33301-50	33401.80	33512.00	33737.10	33946.90	34149.30	34344.00	34530-10	34681.00
LORAN END	17505.00	17450-90	17555-80	174 99 - 80	175 98 • 40	1765C-00				17803-60	
LORAN END	33098.50						17703.10	17742.90	17773.30		17510.30
		33206-60	33316.00	33417.20	33528-79	33752-60	33961-00	34161-90	34357-10	34543.50	34692.99
GEAR DEPTH	41	52	52	5 7	55	5.8	62	0 č	50	66	65
CURATION IN HOURS	0.60	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0 - 5ე	0.50	0,50
DISTANCE FISHED	1-46	1-40	1.54	1.46	1 - 57	1.52	1.37	1.29	1.51	1.57	1.57
PERFORMANCE / GEAR	0 / 38	0 / 38	0 / 38	0 / 39	0 / 39	0,138	0 / 38	0 / 38	0 / 38	0 / 38	0 / 38
D011044											
POFFOCK	1 - 4	649.0	162.0	1838.8	505.3	2129.5	57 7. 2	280-1	183.9	313.7	11.3
PAC COD	0.0	146.3	4.7	56.7	128-4	41-9	200.8	2 39. 9	74.3	83 -9	134.3
PAC OC PERCH	0.0	0.0	C. 0	0.0	0.7	0.0	C-0	0-0	0.0	0.0	0.0
OTHER RCKFISA	C-0	0.0	C- 9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
SABLEFISH	0.0	0.0	0-0	0.9	0.0	0.0	C.0	0.0	0.0	0.0	0.0
PAC HERRING	0.0	0.0	C_ 0	0.0	0.0	0.7	0-9	0.0	0.0	0.0	0.0
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.5	0.7	0.0	0.0
SCULPINS	47.6	ō6•3	23.0	16.2	13.4	61.9	72.9		24.5	8.9	
EELPOUTS								12.0			13.3
	0.4	13.8	4-0	1.5	31.5	3.7	3.2	8.0	2.9	6.3	0 - 2
GTHER RNDFISH	1.1	3. 2	C-5	2.9	0.2	1-1	C = 3	0.2	0.3	0-6	5 - 1
TOT ROUNDFISH	50-4	898.6	214.2	1916.0	678-9	2239.7	955.3	5 3 3 • 6	286.6	413.5	165-3
YELLOW SOLE	34.0	9. 7	27.6	25.0			7 0	2.6	0.7	0 7	
		81.7	23.6	25.9	11.3	0.0	3-8	0.€	0-7	9.7	0.0
ROCK SOLE	C-5	15.5	1-1	10-9	7.9	1.5	7-0	15.2	14.7	2 . 2	6.9
FLATHEAD SCLE	0.0	0.0	0.0	0.0	0.0	0.0	1.5	26.4	28.1	11-1	1)3.6
ALASKA PLAICE	46.9	32.6	7.5	35 - 9	4 - 1	2.4	4.6	44-9	27.2	12.2	0.0
GREENLAND TBT	0.0	0_4	C- 0	3.3	4.9	3.7	5.7	6.8	0-0	0.C	2.0
ARROWTOOTH FL	0.0	0.0	0.0	0.0	0.0	0.0	5-1	15-9	27.0	ి 8 - 6	34_5
PAC HALIBUT	0.5	9.3	0.0	7.9	19-3	0.0	0.0	0.0	0_0	12.1	31.5
CTHER FLIFISA	1.0	90.0	6.5	19.5	6.3	1-9	0.0	0-0	0.0	2.7	1 - 4
TOT FLATFISH	83.2	229.6	38-8	102-3	54.5	9.5	27.9	109.8	97.2		180.0
					- • • •		,		,,,,,		202,
SKATES	5.7	3.5	10.0	18.6	42.9	33. 5	12.7	55-6	19-7	37.6	9 - 1
TOT ELASMOBER	5.7	3.5	10-0	19.6	42.9	33.5	12.7	55.6	19.7	37.6	9 - 1
DE - K-NO - 0043											
RED KING CRAS	0.0	0.0	0-0-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0
BLUE KING CRAB	3.4	7.3	2.7	6.4	6.3	0.0	0.0	C-0	0.0	0.0	0.0
TANNER, BAIRDI	C - O	0.0	0-0	0.2	0.4	1.5	9.0	2.7	19.5	18.6	50-1
TANNER, OPILIC	16.6	12.7	13.2	16-1	11-1	20.7	18-4	10-0	59.6	26.4	4 - 1
TANNER - HYBRID	C • 0	0.0	0.0	0.1	0.0	0-1	0.0	0.1	0.9	2.0	0.0
OTHER CRAB	12.9	3.8	1.5	0.7	1.7	12.9	18.1	8.8	19.4	5-4	3.8
SNAILS	P.2	9.6	4.7	24.5	26.1	83.0	278.1	106.0	35.3	25.4	7.8
SHRIMP	0.2	0.3	0.4	2.7	0.4	0.6	0.4	0.2	0.0	0.2	0.2
STARFISH	1.2	0.6	3.4	27.3	19.3	25.1	17-1	7.9	10-7	5.4	5.9
SOUID	C.0	0.0	0.0	0.0	0-0	0.0	0.0	0.1	0.0	0-0	0.0
OCTOPUS	0.0	0.0	0.0	0.0			0.0				
= -			•		0.0	0.0		0-1	0.0	0.0	0.0
OTHER INVERTS	36.5	4- 8	4.3	3.8	3-4	22-8	9.3	11-2	10-1	1 - 0	?9.l
TCTAL INVERTS	78.9	39.0	3 C - 1	79.7	69.3	166.7	342-1	147.2	154.5	33.5	101.0
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
TOTAL CATCH	218.2	1170.7	293.0	2116.5	845-5	2448.4	1338-0	846.2	558.1	602.3	455.9
- · · - · · · · · · · · · · · · · · · ·				,	777		2.7 / C = U	- TUBE	J > U ■ L	30 C • .	73141

HAUL # MONTH/DAY/YEAP LATITUDE START LONGITUDE START. LATITUDE END LONGITUDE END LORAN START LORAN START LORAN END GEAR DEPTH DURATION IN HOURS DISTANCE FISHED PERFORMANCE / GEAR	157 7/26/84 57	13 8 7/26/84 56 40.8 172 33.9 56 39.4 172 33.9 17745.30 34910.60 17740.10 34915.80 85 0.50 1.39 0 / 38
PCLLUCK PAC COD PAC CC PERCH OTHER KCKFISH SABLEFISH PAC HERRING ATKA MACKEREL SCULPINS EELPOUTS OTHER KNOFISH IOT ROUNDFISH	139.3 74.9 C.0 C.0 0.0 C.0 9.2 C.0 0.7 223.9	1-1 16-3 0-9 0-0 20-9 0-0 0-0 4-8 0-0 0-0 43-1
YELLOM SOLE ROCK SOLE FLATHEAD SOLE ALASKA PLAICE GREENLAND TOT APPONTOOTH FL PAC HALISUT OTHER FLIFISH TOT FLATFISH	C-0 C-7 67-4 C-0 C-0 11-8 3-8 2-3 85-9	0.0 8.4 22.9 0.0 0.0 72.8 11.3 6.6
SKATES TOT ELASMOERH RED KING CRAB BLUE KING CRAB TANNER, BAIRD I TANNER, OPILIO TANNER, HYBRID OTHER CRAB SNAILS SHRIMP STAPFISH SCUID OCTOPUS OTHER INVERTS TOTAL INVERTS	12.0 12.0 C.0 C.0 27.4 0.5 C.0 1.5 6.1 C.1 2.9 0.0	12-2 12-2 0-0 0-0 5-5 0-0 0-0 2-1 7-4 0-1 6-8 0-0 0-0 1-4 23-4
OTHER TOTAL CATCH	0.0 361.9	0.0 201.2

APPENDIX B

Rank Order of Relative Abundance of Fish and Invertebrates

Appendix B contains a computer listing of all fish and

invertebrate species taken during the 1984 demersal trawl survey
in order of relative abundance in kilograms per hectare.

List of Tables

Гable		Page
B-1.	Rank order of relative abundance (kg/ha) of fish	
	invertebrates	127

THIS PAGE INTENTIONALLY LEFT BLANK

Table B-1.--Rank order of relative abundance (kg/ha) of fish and invertebrates.

TCTAL TRANLS 355 TOTAL SPECIES 345 TOTAL EFFORT 1611.9 HA
SPECIES RANKED BY MEAN CPLE (KG/HA)

ENK	SPECIES	MEAN CPUE (KG/HA)	90 PERC		PROPORTION	CUMELATIVE PROPORTION	NAME
1	21740	98.69505	52.74463	114.64547	0.32365077	0.32365077	WALLEYE POLLOCK
2	10210	72.43803	65.33787	79.53820	0.23754611	C.56119689	YELLOWFIN SOLE
3	. 21720	21.51516	19.23928	23.79104	0.07055469	0.63175158	PACIFIC CGD
4	10260	20.82052	17.74500	23.89604	0.06827674	C.70002832	ROCK SOLE
5	10285	15.6452(12.14799	19-14241	0.05130532	0.75133364	ALASKA PLAICE
6	E1742	11-14530	9-21150	13-07910	0.03654879	0.78788243	PURPLE-CFANGE SEASTAR
7	10130	7.33697	6.30109	8.37285	0.02406013	0.81194256	FLATHEAD SOLE 8 BERING FLOUNDER
٤	£85 8 C	5.83549	5.01659	6.65439	0.01913631	0.83107888	TANNER CRAB (OFILIO)
9	10110	3.93631	3-14654	4.72628	0.01290834	0.84398722	ARFONTCOTH & KANCHATKA FLCUNDERS
10	71884	3.71702	2 - 87 8 35	4.55520	0.01218925	0.85617645	NEPTUNEA HEROS
11	€90 € €	3-19099	2.16541	4.21657	0.01046422	C-86564069	PAGURUS TRIGONOCHETRUS
1 2	€9322	3.17012	0.05168	6.28855	0.01039577	0.87703646	RED KING CRAS
1 3	£3020	1.94085	0.72459	3.15712	0.00636464	0-08340109	GORGONO CEPHALUS CARYI .
14	10120	1-9373€	1.56585	2.30337	0.00635319	C.88975429	PACIFIC HALIBUT
15	00400	1.9242€	1 - 42 4 10	2.47442	0.00631024	0.85606452	SKATE UNIDENT
16	00471	1.8772€	1 - 54 1 9 9	2.21254	0.00615611	C-9C2220E3	ALASKA SKATE
17	98082	1.97001	C-64 37 8	3.09625	0.00613233	0.90835296	SIYELA RUSTICA
1 8	71820	1.76563	1.28585	2.24541	0.00579003	0-91414300	NEPTUNEA PRIBILOFFENSIS
19	43000	1-36686	0.72387	2.00985	0.00448236	0,91862535	SEA ANEMONE UNIDENT
2 G	69120	1.35169	0.81838	1.86500	0.00443266	0.92305796	PAGURUS CAPILLATUS
21	68560	1.07715	0.84176	1.31254	0.00353230	0.92659025	TABNER CRAE (BAIRDI)
22	21371	1.04251	. 0.80946	1.27556	0.00341870	C-93000696	PLAIN SCULPIN
23	7187C	- 0.99588	0.67479	1.31698	0.00326580	0.93327475	NEPTUNEA LYFATA

Table B-1.--Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

RÄNK	SFECIES	MEAN CPUE (KG/ha)	90 PERCENCONFIDENCE 1		PROPÖRTI EN	CLPLLATIVE FRCPORTICN	NAME
24	83010	0.98943	0.55730	1.42156	0-00324464	0.93651939	BASKETSTARFISH UNIDENT
25	71882	0.95165	C.77 960	1.12370	0.00312074	0.93964013	NEPTUNEA VENTRICOSA
26	81780	0.87064	C-00C00	1.93470	0.00285509	0.94249522	COPMON MUD STAR
27	21348	0 - 83048	C-39634	1.26461	0.00272338	C.94521861	BUTTERFLY SCULPIN
26	€906€	0.79268	0.48820	1.09716	0.00255945	C.94781805	PACURUS ALEUTICUS
28	21375	0.75906	0.22286	1.29526	0.00248919	0.95030724	MYOXCCEPFALUS VERRUCOSUS (SYN. M. GROENLANDICUS)
30	€0590	0.74627	0.52718	0.96535	0.00244724	0.95275448	LEFTASTEFIAS POLARIS
31	4050C	0.65673	C.50250	0.81096	0.00215362	0.95490810	JELLYFISF UNIDENT
32	10211	0.60902	0.43563	0.78241	0.00199716	0.95690526	L CNGHEAD CAB
33	21347	0.60326	0.29145	-0 • 9 15 10	0.00197633	0.95888358	YELLOW IRISH LORD
34	21420	0.54957	0.34703	0.75292	0.00180353	C.96068712	BIGMOUTH SCULPIN
35	\$8200	0 - 46578	0.00000	1.12720	0.00152743	0.96221455	SEA FOTATC UNIDENT
36	24184	0.46037	0.28142	0 - 6 39 3 3	0.00150971	C.56372426	SPARSE TECTHED LYCOD
37	58105	0.43432	0.20451	0.66413	0.00147476	0.96514852	BOLTENIA CVIFERA
3€	98205	0 • 4 32 3 7,	C.20631	0.65843	0.00141787	0.96656639	HARCCYNTHIA (TETHYUN) AURANTIUM
39 -	9810C	0.41493	0.16495	0.66491	0.00136067	0.96792706	SEA ONION UNIDENT
4 C	21370	0.39358	0.15545	0.63170	0.00129065	0.96921772	GREAT SCULPIN
41	10115	0 - 3 452 €	0-30177	0-46879	0-00126344	0.97048116	GREENLANC TURBOT
42	21375	0.38102	0.14858	0.61346	0.00124548	C-97173063	HYCXCCEPHALUS SP ,
43	E909C	0.34593	0.20296	0.48890	0.00113442	0.97236505	PAGURUS CCHOTENSIS
44	21110	0.33997	0.11743	0.56250	0.00111485	0.97397990	PACIFIC FERRING
4 5	\$100C	0.32647	0.12474	0.52819	0.00107058	C-97505048	SPENGE UNIDENT
46	8005 C	0.32175	0.14465	0-49893	0.00105525	0.97610574	EVASTEFIAS ECHINOSCHA
47	10200	0.27925	0.15239	0.40618	0.00091586	(.97702160	REX SOLE
4 E ·	\$105C	0.27621	0.09230	0.46017	0.00090586	C-97792746	BAFREL SPONGE
49	68577	0.24916	0-10673	0.39158	0.00081706	0.97874451	HYAS CFAE (FOUNDED SPINED)
50	21368	0.2484(0-13299	0.36381	0.00081459	0.97955910	HARTY SCULPIN
51	E9095	0.23172	0.06686	0.39657	0.00075987	0-98031897	PAGURUS FATHEUNI

FAAR	SPECIES	MEAN CPUE (KG/HA)	90 PERCE *CENFIDENCE		PROPORTION	CUMULATIVE FROPORTION	NAPE
5 2	7250C	0.21252	0-13831	0.28672	0.00069691	0.98101589	FUSITRITON OFE CONENSIS
53	69323	0.20501	0-14849	0.26153	0.00067229	0.98169818	BLLE KING CRAB
5.4	20510	0.19857	C-C7600	0.32114	0.00065118	0-98233935	SABLEF ISH
55	00472	0.19568	0-00909	0.38227	0.00064168	0.98298104	ALEUTIAN SKATE
`5 6	1022C	0.17935	0.07055	0.28815	0.00058814	0.98356917	STARRY FLOUNDER
57	20040	0.17355	0.13606	0.21112	0.00056926	0.98413843	STURGE ON FOACHER
5 8	21316	0.17268	0.06567	0.26068	0.00056651	0-98470535	ARMORHEAC SCULFIN
59	72752	0.17281	0-12454	0.22109	0.00056671	C-98527206	SILKY PHELK
£ C	20720	0.16288	0.07245	0.25332	0.00053414	C-98580620	SEARCHER
€ 1	23010	0.15788	0.06583	0.24992	0.00051772	0.98632392	EULACHEN
€ 2	24185	0,14975	0.10954	0.19003	0-00049120	0.98681512	WATTLEC EELPOUT
63	6907C	0.14803	0.08561	0.21045	0.00048542	0.98730055	PAGURUS CONFFAGOSUS
€ 4	58000	0.14713	0.05413	0.24013	0.00048247	0.98778302	TUNICATE UNIDENT
65	71753	0.14457	0.04066	0.24849	0.00047410	C.9E825712	PYRULOFUSUS DEFORMIS
66	71001	0.14428	0.10889	0.17967	0.00047315	0-98873027	SNAIL (GASTRCPCD) EGGS
67	85201	0.14114	0.02377	0.25850	0.00046283	0.98919310	CUCUMAFIA SALLAX
€ €	4500C	0.13989	0.00000	0.34641	0.00045873	0.98965182	CTENOPHORA
6 9	2020C	0.13679	0-10003	0.17354	0.00044857	0.99010039	LETHASTEFIAS NANIMENSIS
7 C	43010	0.13045	0.00000	0.29247	0.00042792	0.99052831	METRIDIUM SP
71	5831C	0.12252	0.05 874	C.18630	0.00040178	0-95093009	APLIDIUM SP
72	12743	0-11406	C.07185	0.15627	0.00037404	C-59130413	BUCCINUN ANGUL CSUM
73	4302C	0.10656	0.00959	0.20354	0.00034946	0.99165359	METRIDIUM SENILE
74	72755	0.10427	0.06654	0.14200	0.00034193	0-99199552	BUCCINUM POLARE
75	71756	0.09978	0-06982	0-12973	0.00032719	0.99232271	VOLUTOFSIUS FRAGILIS
76	71035	0.09170	0-06029	0.12310	0.00030070	C-99262342	NEPTUNEA EDREALIS
77	68781	0.09068	0.05358	0.12779	0.00029737	C.95292079	TELMESSUS CRAB
7 E	85000	0.09016	0.01044	0.16988	0.00025565	C.95321644	SEA CUCUPBER UNIDENT
79	6940C	0.08053	0.05886	0.10221	0.00026409	0-95348054	KOREAN HERSEHAIR CRAP

Table B-1. -- Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

RANK	SFECIES	MEAN CPUE (KG/HA)	90 PERCE *CONFIDENCE		PACPORTION	CUMULATIVE PROFORTION	NAME
.e c	£2510	0.08007	0.0000	0.18231	0-00026256	0.99374310	GREEN SEA URCHIN
e 1	20003	0.07775	0-04721	0.10629	0-00025497	0.59399807	STARFISH UNIDENT
82	8273 Ö	0.07755	0-00817	0.14693	0.00025431	(.99425237	SAND DELLAR UNIDENT
٤ ع	69061	0.06750	0.04745	0.08756	0-00022137	0.95447374	LAGICLECHIRUS (PAGURUS) SPLENCESCENS
84	30420	0.06457	0.00000	0.17155	0.00021174	0.99468548	NORTHERN ROCKFISH
8.5	66031	0.06417	0.03816	0.09018	0-00021043	0.99489591	PINK SHRIMP
86	21313	0.06295	0-00000	0.13260	0.00020656	C = 99510247	GYPNOCANTEUS: SP
87	£0010	0.05848	0-00000	0.12420	0-00019176	C.99529424	EVASTERIAS SP
8 9	78010	0.05655	C-01960	0.09357	0.00018556	C.995479E0	CCTUPUS UNICENT
. 89	23041	0.05505	0-04404	0.06613	0.00018064	0-99536044	CAPELIN
90	£2500	0.05325	0-00000	0.11494	0.00017463	0.99583507	SEA URCHIN UNIGENT
51 .	10276	0.05146	C-00000	0.10616	0.00016874	0.99600380	BUTTER SELE
92	41201	0.04955	0.01825	0.08093	0.00016262	0.99616643	EUNEPHTHY4 (GERSEMIA) SP
53	24191	0.04890	0.01476	0.08305	0.00015037	C.99632680	SHCATFIN EELPOUT
94	£0594	0.04325	0.01850	0.06800	0-00614183	0.99646863	LEPTASTERIAS ARCTICA
95	68578	0.04236	0.02862	0-05614	0-00013659	0.59660761	HYAS CFAE (SHARP SPINED)
96	69121	0.04024	0.01246	0.06802	0.00013197	0.99673958	ELASSOCHIFUS CAVINANUS
97	72740	0.03601	C-91481	0.05721	0-00011809	0.99685768	BUCCINUM SP
9 E	71961	0.03598	0.01940	0.05255	0.00011758	0.95697565	CLINGPEGRA (ANCISTROLEPIS) HAGNA
99	56311	0.03538	0.02212	0.04864	0.00011602	C-95709168	EUNOE NOCOSA
106	€8590	0.03505	C-01838	0.05172	0.00011494	C.99720662	TANNER CRAB (HÝBRIC)
101	21436	0 - 0 34 4 0	0.00998	0.05883	0.00011282	C.99731944	THERNY SCULPIN
102	9830C	0.03319	C.00000	0.07166	0.00010883	C.99742827	COPPCURE ASCIDIAN UNIDENT
103	21735	0.03263	0.00453	0.06074	0.00010701	0.99753528	SAFFRON COD
104	00420	0.03236	0.00000	0.08600	0.00010611	0.99764140	BIE SKATE
105	£300C	0.02871	0-00000	0.05796	0-00005423	C.99773563	BRITTLESTARFISH UNICENT
106	71030	0.02694	0.00000	0.06014	0.00008835	C.99782398	DICHEDES. TRITCH
107	71891	0.02375	0.01504	0.03255	0.00007803	0.99790201	PLICIFUSUS KRUYERI

Table B-1.--Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

RANK	SPECIES	MEAN CPLE (KG/HA)	90 PERCEN		PROPORTION	CUMULATIVE FROPERTION	NAME 1
108	£135 5	0.02165	0.01296	0.03035	0.00007100	0.99797361	PTERASTE F DBSCURUS
105	74562	0.02088	C-00805	0.03371	0.00006846	C.99804147	MUSCULUS CISCUAS
110	2000€	0.02008	0.00463	0.03553	0.00006586	0.99810733	SABBACK FCACHER
111	€010€	0.01951	C-00000	0.05046	0.00006397	0.99817129	ORTHASTERIAS KCEHLERI
112	7150C	0.01783	0-00806	0.02760	0.00005848	0.99522978	SNAIL UNICENT
113	71772	0-01761	0-01179	0.02343	0.00005774	0.99828752	BERINGIUS EERINGII
114	6851C	0.01638	C-00688	0.02383	0.00005364	0.99834116	DECORATOR CRAB
115	9500C	0.01584	0-00000	0.03275	0.00005153	0.99839309	BRYDZOAN UNICENT
116	- 80595	0.01521	0.00426	0.02615	0.00004986	0.99844295	LEPTASTERIAS SP
117	21725	0.01472	0.00977	0.01967	0.00004827	0.99849122	ARCTIC CED
118	42000	0.01330	0.00374	0.02286	0.00004361	0.99853483	SEA FEN UNIDENT
119	71764	0.01317	0.00491	0.02142	0.00004317	C.998578CO	VALUTOPSIUS PICDENCORFFII
12C	71681	0.01297	0.00558	0.02037	0.00004255	C.99862055	CREPIDUL & GRANDIS
121	24001	0.01172	0.00000	0.02763	0.00003843	0-99865893	PRCWFISH
122	4304C	0.01151	0.00431	0.01871	0.00003774	C.99869673	TEALIA SP
123	8520C	0.01137	0.00304	0.01970	0.00003730	0-99873402	CUCUMAFIA SP
124	71800	0.01060	0.00297	0.01823	0.00003477	0.99876879	NEPTUNEA SP
125	£3320	0.01016	0.00000	0.02214	0.00003333	C.99880213	OPFIURA SARSI
126	7101C	0.0100?	0.00573	0.01434	0.00003291	0.99883503	NUCIERANCH UNICENT
127	23235	0.00995	0.00001	0.01996	0.00003275	0.99886779	CHUM SALVEN
128	75285	0.00991	0-00547	0.01435	0.00003249	0-99890028	GREENLAND CECKLE
129	8274C	0.00981	0.00000	0.02252	0.00003216	0.95893244	PARMA SANC ECLLAR
130	7175C	0.00975	0.0000	0.02119	0.00003210	0.99896454	VCLUTOPSIUS SP
131	72063	0.00968	0.00556	0.01380	0.00003174	0.99899628	AFCRIA (LEUCCSYRINX) CIRCINATA
132	22200	0-00903	0.00350	0.01456	0.00002962	C.95902590	SNAILFISH UNICENT
133	71765	0.00988	0.00135	0.01642	0.00002913	C-99905503	BEFINGIUS SP
134	20322	0.00868	0-00089	0.01647	0.00002848	C-99908351	BERING HOLFFISH
135 -	72751	0-00848	0-00066	0.01631	0-00002782	0-99911133	LYFE WHELK

Table B-1.--Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

RANK	SPECIES .	MEAN CPUE (KG/HA)	90 PERCENT *CONFIDENCE LIM	I T S+	PROPORTION	CUMULATIVE PROPÓRTICN	NAME
136	75111	0.00906	0.00496	0.01115	0.00002642	0.99913775	ALASKA SUFF CLAM
137	74560	0-00794	0.00000	0.01848	0.00002605	0.99916380	MUSCULUS SP
138	71763	38700.0	C. 00 00 0	0.01656	0.00002585	C.99918965	VOLUTOPSIUS STEFANSSONI
139	21390	0.00777	0.00445	0.01108	0.00002547	0.99921511	SPINYHEAR SCULPIN
140	65000	0-00773	0.00118	0 - 014 28	0.00002535	0.55924046	BARNACLE UNIDENT
141	£136C	0.00747	C.00060	0.01434	0.00002451	0.59926497	DIFLOPTERASTER MULTIPES
142	74983	0.00637	0.00340	0.00923	0.00002072	0.95928568	CLINECAREIUM CILIATUM
143 -	71012	0.00623	0.00043	0.01203	0.00002043	0.99930611	ORANGEPEEL NUDIERANCH
. 144	\$101E	0.00595	0.00000	0.01553	0-00001951	0.95932562	SUEERITES FICUS
145	66611	0.00594	0.00393	0.00795	0.00001947	0.99934509	ARGIS LAR
146	66502	0.0057C	0.00384	0.00757	0 - 0000 1870	C.99936379	CRANGON SP
147	24185	0.00555	0-00000	0.01460	0.00001833	0-99938213	POLAR EELPOUT
148	50000	0.0052 €	0.00074	0.00982	9.00001732	0.55935945	POLYCHAETE WORM UNIDENT
149	81095	0.00505	0.00127	0.00884	C.00001657	C.959416C2	CRESSASTER PAPPESUS
15C	40011	0.00485	0.00077	0.00901	0.00001603	0.59943205	HYCROIC UNICENT
151	71761	0.00442	0.00208	0.00677	0.00001450	0.99944655	VOLUTOFSIUS MELONIS
152	00450	0.00427	0.00000	0.0921	0.0001400	0.99946055	STARRY SKATE
153	715ec	0.042€	0.00209	0.00642	0.00001395	0.95947451	POLINICES PALLIDA
154	20320	0.00402	0.00000	0.01069	0.00001318	C-99948759	HOLF-ESL
155	00435	0-06400	0-00000	0.00943	0.00001311	0.99950080	BEFING SMATE
156	74311	0.00393	0.00182	0.00605	0-00001250	0.99951370	HIATELLA ARCTICA
157	21314	0.00385	0.00193	0.00577	0.00001263	0.99952633	THREADED SCULPIN
156	6600C	0.00371	0-00089	0.00653	0.00001217	0-95953850	SHRIMP UNIDENT
159	71774	0.00355	0.00041	0.00676	0-00001177	0.59955027	BEFINGIUS STIMFSONT
16G	69035	0.00353	0.00000	0.00850	0.00001156	0.99956183	PAGURUS SP
161	4400C	0.00346	0.00000	0.00798	0.00001136	C.99957319	CORAL STORY UNIDENT
162	68040	0.00325	0.00136 .	0-00521	0.00001078	0.99998397	CANCER OFEGCNENSIS
163	65210	0.00323	0.00000	0-00859	0.00001060	C.99959457	PSOLUS SP

Table B-1.--Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

FANK	SFECIES	MEAN CPUE (KG/HA)	90 PERCEN *CONFIDENCE L		PROPORTION	CUMULATIVE PROFORTION	NAME
164	\$990C	0.00314	C-00C00	0.00706	0.00001031	C.55960488	MOLGULA SP
165	22204	0.0308	C-00137	0.00480	0.00001010	0.59961498	MARBLEC SNAILFISH
166	66045	0.00303	0.00214	0.00392	0.00000993	0.99952491	HUMPY SHRIMP
167	10212	0.00275	0.00104	0.00454	0.00000916	0.55963407	LIMANDA SAKHALINENSIS
168	74416	0.00278	0.00000	0.00617	0.00000912	0-99964319	YOLDIA SCISSURATA
169	75205	0.00277	0.00042	0.00513	0.00000910	C.99955228	GREAT ALASKAN TELLIN
17 C	7171C	0.00265	0.00000	0.00612	0.00000882	0.95966111	COLUS SP
171	23805	0.00265	0.00197	0.00341	0.00000862	0.99966993	DAUBED SHANKY
172	71726	0.00262	0.00060	0.00463	0.00000858	C-99967850	COLUS SPITZBERGENSIS
173	€9110	0.00248	0.00000	0.00524	0.00000812	C.95968662	ELASSOCHIRUS TENUIKAYUS
174	66570	0.00237	0.00142	0.00333	0.00000778	C.95969440	ARGIS SP
175	6200G	0.00234	C.00000	0.00540	0-00000769	0.95970209	ISCPOD UNIDENT
176	20061	0.00228	C-00144	0.00312	0.00000747	0.99970956	BERING PCACHER
177	21455	0.00226	-0.00000	0.90600	0-00000740	0.99971696	SMOOTH LUMPSUCKER
17 €	2005 C	0.00224	C.00144	0.00304	0.00000735	C-55972431	ALEUTIAN ALLIGATORFISH
179	71724	0.00222	C. CO COO	0.00459	0.00000729	0.59973160	COLUS FOSEUS
18C	21921	0.00205	0.00000	0.00475	0.00000686	0.95973846	ATKA HACKEREL
181	E054C	0-00202	0.00053	0.00350	0.00000661	C.55974507	HENRICIA SP
182	21441	0.00191	0.00097	0.00286	0.00000627	0.99975135	SPATULATE SCULPIN
183	71537	0.00185	0.00000	0.00491	0.00000618	0.99975753	NATICA RUSSA
184	56312	0.0018	0.00089	0.00279	0-00000664	0.95976357	EUNOE CEPFESSA
185	65515	0.00182	0.00111	0.00253	0.00000597	0.99976954	CRANGON COMMUNIS
186	21350	0.00160	0.00098	0.00262	0.00000591	C.99977545	TRIGLOPS SP
187	21340	0.00178	0.00000	0.00397	0.00000585	0.99978130	BLACKFIN SCULPIN
188	74120	0.00172	0.00026	0.00318	0.00000564	0-99978694	HEATHEFYANE SCALLOP
189	71721	0.00167	0.00065	0.00270	0.00000549	C.55979243	COLUS FERENCEENII
15G	7410€	0.0016€	c.00000	0.00340	0.00000545	C.99979788	CHEANYS FUBIDA
191	00410	0.00151	0.00000	0.00401	0.00000495	0-99980283	DEEPSEA SKATE

Table B-1. -- Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

RANK	SFECIES	MEAN CPUE (KGŹHA)	90 PERCE		PROPORTION	CUMULATIVE FRCFORTICN	NAME
192	69310	0-00149	0.00000	0.00396	0-00000489	0.99980772	GOLDEN KING CRA3
153	74435	0.00146	0.00040	0.00252	0 - 00 00 04 7.8	0-95981250	NU CULANA FOSSA
194	23055	0.00143	0.00000	0.00335	0.00000469	0.99981719	RAINBON SPELT
195	69042	0.00137	0.00000	0.00316	0.00000449	(.55982169	PAGURUS ERANETI
196	\$503C	0.00136	0.00000	0.00346	0.00000446	C-99982615	FLUSTRA SERRULATA
197	€9082	0.00133	0-00000	0.00266	0+00000435	0.99983050	PAGURUS DALLI
198	7902C	0.00132	C. 00062	0.00203	0.0000434	C-95983464	ROSSIA PACIFICA
199	71755	0.00128	0-00000	0.00330	0.00000420	0.99983903	PYRULOFUSUS (VOLUTCPSIUS) HARPA
200	75242	0.00127	0.00017	0.00237	0.00000415	C.95984318	MACOMA CALCAFEA
135	C043C	0.00126	0-00000	0.00291	0.00000414	C-99984733	SANDPAFER SKATE
202	74655	0.00124	0.00026	0.00221	0.00000406	0.99985139	CYCLCCARCIA CREBRICOSTATA
203	21354	0.00128	0.00000	0.00317	0.00000401	0.99965539	SPECTACLED SCULPIN
204	21300	0.00122	c-00000	0.00317	0-00000399	C-95985938	SCULPIN UNICENT
205	21935	0.00120	0-00000	0.00319	0-00000394	0-95986332	KELP GFEENLING
206	74060	0.00120	0.00011	0.00229	0.00000394	0.99986725	HORSE MUSSEL
207	21355	0.00118	0.00053	0.00133	0.00000387	0-95987112	RIBBED SCULPIN
206	75110	0.00118	0.00000	0-00242	0.00000387	0.95987499	SPISULA SP
209	75600	0.00113	0-00000	0.00270	0.00000372	C-95987871	PUEODE SHUS MACROSCHISMA
210	£066C	0.00109	0-00010	0.00208	0.00000357	0-99968228	PSEUDARCHASTER PARELII
211	21446	. 0.0010€	0.00045	0.00171	0.00000354	0-99988582	TCELUS SF
212	6653C	0.00104	0.00041	0.00168	0.00000342	C-95988924	CRANGON CALLI
213	65203	9.0009.6	0.00000	0.30214	0.00000320	C-55989244	BALANUS (CHIFONA) EVERMANNI
214	81061	0-0009€	0.00000	0.00255	0.00000314	0.99989558	SOLASTER ENDECA
215	£131C	0.00094	C.00000 .	0-00137	0.00000307	0.95989865	PTERASTER SP
21€	5630C	0.00090	0.00003	0-00177	0.00000295	0.99990160	SCALENGRE UNIDENT
217	41100	0.0008€	0.00000	0.00195	0.00000281	C.99990441	SOFT CORAL UNICENT
218	21900	0.00075	0.00000	0.00205	0.00000258	C-55990659	GREENLING UNIDENT
219	7123C	0.00078	0.00000	0.00157	0.00000255	0.99990954	SPECKLED SEA LEMON

Table B-1.--Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

FANK	SPECIES	MEAN CPUE (KG/HA)	90 PERCEN		PROPORTION	CUMLLATIVE PROPORTION	NAME
.550	21592	0.00077	0.00000	0.00174	0.00000253	C.99991207	PACIFIC SANDFISH
2,21	. 7 5264	0.0007 €	0.00028	0.00125	0.0000250	C•55991456	SILIGUA SP
. 2.2 2	20202	0 . 0007 €	C-00035	0.00117	0-00000249	0.99991706	PACIFIC SAND LANCE
223	72406	0.000€€	0.00004	0.00133	0.00000223	0.95991929	TROPHON CLATHRATUS
224	21380	0-00067	0.0000	0.00172	0.00000220	C.95992149	PACIFIC STAGEORN SCULPIN
225	7900C	0.0006€	c - coooo	0.00153	0.00000215	C•95992364.	SCUID UNICENT
22€	72756	0-00065	C-00023	0.00108	0.00000214	C.99992578	BUCCINUM SOLENUM
227	\$9902	0.00063	0.00000	0.00129	0.00000206	C-99992784	MOLGULA CRIFITHSII
228	20060	0 - 0 00 € 1	0.00000	0.00163	0.00000202	0.99992986	HAFTY FOACHER
229	74982	0.000€€	0-00017	0.00103	0.00000197	0.99993182	NUTTALS CUCKLE
230	72421	0.00055	C • 00 00 3	0.00107	0.00000180	0.99993363	TREPHONOPSIS (BORECTROPHON) PACIFICUS
231	71634	0.00054	0-00000	0.00115	0.00000177	0.99993539	TACHYRHYNCHUS EROSUS
232	50160	0-00053	0.00026	0.00080	0.00000173	0.55993712	SEA MOUSE UNIDENT
233	50010	0.00052	0-00004	0.00100	0.00000172	C-99993884	TUBE WORF UNIDENT
234	72541	0.00052	0-00000	0.00122	0.00000172	G-99994055	SULARIELLA DESCURA
235	7465C	0.00045	C-00000	0.00100	0.00000161	0-99994217	CA FDITA SP
236	6650C	0.00045	0-00000	0-00110	0.00000159	0.95994376	CRANGONIC SHRIPP UNIDENT
237	74641	0 - 0 00 4 5	0.00000	0.00104	0.00000147	0.95994523	ASTARTE EGREALIS
23€	20055	0-00042	0-00016	0-00072	0.00000145	C-59994667	SMCOTH ALLIGATORFISH
239	80725	0.00043	0-00000	0.00114	0.00000141	0.55994808	RED BAT STAR
240	415 8 C	0.00041	0.00000	0.00088	0.00000133	0.99994942	PARAGORG 1A SP
241	22205	0.00041	0.00000	0.00092	0.00000133	C.95995075	LIPARIS CIBBUS
242	41221	0 - 0 00 4 1	0-00000	0.00096	0-00000133	0.99995208	EUNEFHTHYA (GERSEMIA) RUBIFORHIS
,243	71765	0.00046	0-00000	0.00097	0.00000132	0.99995340	VOLUTOPSIUS TREPHONIUS
,244	30535	0.00040	C-00000	0.00105	0.00000130	C.95995470	HAPLEQUIN ROCKFISH
.245	-€8010	0.00035	0-00000	0.00094	0.00000116	0.99995506	CANCER CFAB UNIDENT
246	71911	0.00035	0.00000	0.00094	0.00000116	C-959957C3	LIONESUS COIEES
247	3004C	0.00035	0.00000	0.00094	0.00000116	C.59995819	ROCKFISH UNIDENT

Table B-1.--Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

		•					
BAVK	SFECIES	MEAN CPUE (KG/HA)	90 PERCE *CENFIDENCE		PROPORTION	CUMLLATIVE FROFORTION	NAME
248	23808	0.00035	0.00000	0.00079	0.00000116	0.9555534	SNAKE FRICKLEBACK
249	68020	0.00034	0.00000	0.00090	0.00000111	0.99996046	DUNGENESS CRAS
250	21932	0.00033	0.00000	0.00068	0.00000110	0.99996155	WHITESPOTTED GREENLING
251	75267	0.00032	0.00000	0.00066	0-00000104	0.55996259	DALL S RAZOF CLAM
252	75020	0.00031	0.00000	0.00084	0.00000103	0.55996362	BUTTER CLAM
253	20035	0.00031	0.00004	0.00057	0-00000100	0.95996462	GRAY STAFSNOUT
254	66175	0.00030	C.00000	0.00066	0-0000058	0.99996560	EUALUS GAINARDII BELCHERI
255	74110	0.00030	C. CO CO O	0-00074	0.00000098	C_\$9996658	CHLANYS FINCSTI
256	72805	0.00025	0.00001	0.00058	0.00000097	0.99996754	VELUTINA VELUTINA
257	71770	0.00025	0.00000	0.00067	0.00000096	0.95996850	BERINGIUS KENNICOTTI
25€	59111	0.00025	c.00000	0.00073	0.00000096	0.55996946	STRIPEC SEA LEECH
259	7921C	0.00025	C. GO 000	0.00076	0-00000054	0.99997040	BEFRYTEUTHIS MAGISTER
260	75241	0.00028	0.00000	0.00073	0.00000091	0.99997130	COPMON HACOMA
261	74414	0.00025	0.0000	0.00068	0.00000084	0.99997214	YOLDIA SP
262	8054€	0.00025	0.00000	0.00053	28000000 - 0	0.99997296	HENRICIA TUMIDA
263	71759	0.00025	0.00000	0.00066	0.000000 62	C.99997378	VULUTOPSIUS FILUSUS
264	22236	0.00023	0.00000	0 - 900 55	0.00000076	0.95997454	PINK SNAILFISH
265	74333	0.00023	0.0000a	0.00038	0.00000075	0-95997529	NUCULA TENUIS
266	E0230	0.00023	0.00000	0.00061	0.00000075	C.55997604	PECICELLASTER MAGISTER
267	7 5260 .	0.00021	C-C0000	0.00055	0.00000068	C.99997672	BUTTER CLAM
268	71525	0.00020	0-00000	0.00047	0 - 0000 0067	0.99997739	NATICA SF
269	21352	0.00020	0.00000	0-00049	0.00000066	0.95997805	SCISSORTAIL SCULPIN
270	71725	0.00020	0.0000	0.00040	0-00000065	0.99997870	COLUS ESYCHUS
271	74080	0.00020	0.00000	0.00041	0.00000065	0.99997935	BAY HUSSEL
272	43042	0.00020	0.0000 i	0.00038	0.00000064	0.95998000	TEALIA CFASSICORNIS
273	60542	0.00015	0.00005	0.00033	0.00000062	0-95998061	HENRICIA SANGUINOLENTA
274	71762	0-00017	0.00000	0.00045	0.00000056	0.99998117	VOLUTOPSIUS SIMPLEX
275	74561	0.00017	0.00004	0.0030	0.00000055	C.59998172	MUSCULUS NIGER

Table B-1. --Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

PYVK	SPECIES	MEAN CPUE (KG/HA)	90 PERCE		PROPORTION	CUMULATIVE PROPORTION	NAME
276	7173C	0.06016	0.00003	0.00029	0.00000053	0.99998225	COLUS APHELUS
277	665 80	0.00016	0.00000	0.00035	0.00000052	C.99998277	ARGIS DENTATA
278	£1064	0.00015	C-00000	0.00041	0.00000051	0.95993327	SOLASTER CANSONI
279	6617C	0.00015	0.00003	0.00027	0.00000049	0-59998377	EUALUS SP
280	2003€	0.00015	0.00000	0.00030	0.00000049	0.95998426	SPINYCHEEK STARSNOUT
281	6660C	0.00015	0.0000	0.00040	0.00000049	0.95998475	SCLEROCRANGON SP
282	71722	0.00015	0.00001	0.00028	0-00000048	0.99998522	COLUS PYFOLISPUS
283	20000	0.00014	0.00000	0.00037	0.00000045	0.99998568	POACHER UNIDENT
284	£6165	0.00013	0.00000	0.00027	0-00000044	0.99998612	HIFPOLYTID SHRIMP UNIDENT
285	74420	0.00013	0.00003	0.00023	0-00000044	0.99998655	YCLDIA HYPERBOREA
286	50192	0.00013	0.00000	0.00035	0.00000043	C.99998698	APPRODITA NEGLIGENS
287	22232	0.00013	0.00000	0.00027	0.00000041	0.55998740	CAFEFRECIUS SCOTTAE
288	75203	0.00013	0.00000	0.00029	0.00000041	0.99998781	TELLINA NUCULUIDES
289	77012	0.00012	c.00000	0.00033	0.00000041	C.99998822	DENTALIUM DALLI
296	21463	0.00012	0-00002	C.00023	0.00000041	0.99998862	PACIFIC SPINY LUMPSUCKER
291	82530	0.00012	0.00000	0.00032	0-00000040	0.99998902	ORANGE-PINK SEA URCHIN
292	E952C	0.00012	0.0000	0.00031	0.00000039	0.99998941	HYAS SF
293	7444C	0.00012	0.00001	0.00023	0.00000039	0.99998979	NUCULANA BUCCATA
294	72804	0.00012	0.00000	0.00031	0.00000039	0.99999018	VELUTINA PRCLENGATA
255	74563	0.00012	C-00001	0.00022	0.0000038	0.99999056	MUSCULUS CLIVACEUS
29€	7405C	0.00012	0.00000	0.00031	85000000-0	0.55995094	HUSSEL UNIDENT .
297	69010	0.00012	0.00000	0.00031	0.00000038	0.99999132	HERMIT CRAB UNIDENT
298	7010C	0.00011	0.00000	0.00026	0.00000037	C-99999168	CHITON UNIDENT
299	80544	0.00011	0.00000	0.00022	0.00000035	0.95999204	HENRICIA LEVIUSCULA
300	71011	0.00011	0.00000	0.00022	0.0000035	0-99999239	ONCHIDORIS BILAMELLATA
301	66033	0.00910	0.00000	0.00027	0.00000033	C.95999272	PANDALUS TRIDENS
302	75610	0.00005	0.00000	0.00025	0.00000031	0.99999303	ROCK JINGLES UNIDENT
303	3006 C	0.00005	0.00000	0.00025	0.0000030	C.55999333	PACIFIC CCEAN PERCH

Table B-1.--Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

RANK	SFECIES	MEAN CPUE (KG/HA)	90 PERCE *CONFIDENCE		PROPORTION	CUPULATIVE PROFORTION	NAME
3 C 4	C04C1	0.00005	0.00001	0.00018	0.00000030	C.599993E4	SKATE EGG CASE UNIDENT
305	74000	0.00005	0.00000	0.00020	0.0000030	0.59999393	CLAN UNICENT
306	9400C	0.00005	0.00000	0.00023	0.00000029	0.55999422	SIFUNCULID WORP UNICENT
307	72803	0.00005	0.0000	0.00017	0.00000028	C.95999451	VELUTINA CONICA
30€	92500	0.00005	0.00000	0.00023	0-00000028	0.95999419	NEFERTEAN WORM UNIDENT
309	21315	0.00005	C.00001	0.00016	0.00000028	0.59999507	ARCTIC STAGRORN SCULPIN
31 C	71723	0.0000 8	0.00000	0.00019	0-00000028	0.99999535	COLUS OMERONIUS
311	73185	0.00008	0.00000	0.00019	0.00000028	0.99999562	ADVETE LAEVIOR
312	9450C	0.00008	0.00000	0.00022	0.00000027	C.55999590	ECFIURCIC WORM UNICENT
313	22201	0.00007	0.00000	0.00018	0.00000023	0.99999612	LIPARIS SF
314	£1090	0.00007	0.00000	0.00018	0-00000022	C.99999635	CRGSSASTER SP
315	E1775	0.0000€	0.00000	0.00017	0.00000021	0.99999655	CTENODISCUS SP
316	74421	0.00006	0.00000	0.00016	0.00000020	C.99999675	PORTLANDIA SP.
317	71535	0.0000€	0.00000	0.00013	0-00000020	C.99999695	NATICA ALEUTICA
318	75326	0.0000€	0.00000	0.00012	0.00000019	0.95999714	LICCYMA FLUÇTOSA
319	72534	0.0000€	0.00000	0.00012	0.00000019	0.99999733	MARGARITES ARGENTATUS
3 2 C	10000	0.0000€	0.00000	0.00015	0.00000019	C.55999751	SANDDAE UNIDENT
138	20001	0.0000€	0.00000	0.00012	0.0000018	C.95999770	TUEENOSE POACHER
322	71530	0.00005	0.00000	0.00013	0.00000016	0.95999786	NATICA CLAUSA
323	97000	0.00004	0.00000	0.00010	0.0000012	C.55999758	BRACHICPCC UNICENT
324	75201	0.00003	0.00000	0.00009	0-00000011	0-95999809	TELLINA SP
325	50011	0.00003	0-00000	0.00009	0.00000011	0.99999820	SERPULA VERMICULARIS
326	71731	0.00003	0.00000	0.00009	9-00000011	C-55999831	COLUS FALLI
327	9490C	0.0000?	. 0.00000	0-000,09	0.0000011	0.95999642	PHORENIDA WOFM UNIDENT
328	£5120	0.00003	0.00000	0.00009	0.00000011	0.99999853	MOLPADIA INTERMEDIA
325	74175	0.00003	0.00000	80000.0	0.00000010	C-59999863	PREPEAMUSSIUM ALASKENSIS
330	74644	0.00002	0.0000	0.00008	0.00000010	0-55999873	ASTARTE FOLLANDI
331	E340C	0.0000?	0.00000	0.00008	0.00000010	0.95999883	OPPIOPHCLIS ACULEATA

Ţ

Table B-1. --Rank order of relative abundance (kg/ha) of fish and invertebrates (cont'd).

PANK	SPECIES	MEAN CPLE (KG/HA)	90 PERCE		PRCPORTION	CUMULATIVE FRCPORTION	NAME .
332	97116	0.00003	C-00009	0.00008	0-00000610	C+\$\$999893	LAQUEUS CALIFORNIANUS
333	72103	0.00003	0.00000	800008	0.00000010	0.95999903	OENOPOTA HARPA
334	69315	0.00003	0.00000	0.00008	0.00000010	0.99999913	HAFALOGASTER SP
335	5403C	0.00003	0.00000	0.00006	0-00000010	0.55999923	CHEILONE FEIS CYCLURUS
336	74985	0.00003	0.00000	800008	0.00000009	0.95999932	CLINCCARDIUM CALIFORNIANUS
337	75335	0.00003	0.00000	0.00008	0.00000009	0.99999942	MYA PSEUDCARENARIA
336	74417	0.00003	0.00000	0.00008	0-00000009	C.99999951	FILE YCLCIA
339	59100	0.00003	0.00000	0.00008	0.00000009	0.99999960	LEECH UNICENT
340	71640	0.00003	0.00000	0.00007	0.00000009	0.99999970	SLIPFER SHELL
341	74986	0.00002	0.00000	0.00006	0.00000008	0.95999977	CLINOCARDIUM FUNCANUM
342	23804	0.00002	0.00000	0.00005	0.0000007	0.95999984	ARCTIC SHANNY
343	80112	0.00008	0.00000	0.00005	0.00000006	0.95999989	LEPTASTEFIAS HYLODES
344	78403	0.00002	C. CO CO O	0.00004	0-00000005	C.95599995	OCTOPUS CCFLEINI
345	74564	0.00002	0.00000	0-00004	0.00000005	1.00000000	NU SCULUS SENINUOUS
	TOTAL	304.94304					

ENC OF RANK

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

Abundance Estimates for Principal Fish Species

Appendix C contains computer printouts of abundance estimates for each of the principal eastern Bering Sea groundfish species in terms of CPUE (in kilograms per hectare and numbers per hectare), population number, and biomass (in metric tons). Confidence intervals include only sampling error and do not incorporate effects of biases from other sources. Estimates are given separately for each of the 15 geographic strata used in the analysis; estimates for each of the seven standard subareas are presented as subtotals of the component strata, and the estimates for the overall survey area are shown as the total for all strata. codes correspond to subareas (illustrated in Fig. 3) as follows:

Stratum	Subarea
10	1
20	2
21	<pre>2 (Pribilof high-density area)</pre>
30	3N
32	3N (St. Matthew high-density area)
40	4N
41	4N (Pribilof high-density area)
42	4N (St. Matthew high-density area)
50	5
5 1	5 (St. Matthew high-density area)
60	4 S
61	4S (Pribilof high-density area)
70	3 S
71	<pre>3S (Pribilof high-density area)</pre>
72	3S (St. Matthew high-density area)

Other column headings are defined as follows:

Area of the stratum, in square nautical miles (nmi²). Area:

Samples: The number of sampling units in the stratum. (One sampling unit equals the mean path width of the

trawl times a distance of 1 nmi.)

Mean WT KG: Mean weight of individual fish captured in the given stratum.

Method: Code 1 indicates that weights and numbers were available available for all catch records for that species.

List of Tables

Table		Page
C-1.	CPUE, population, and biomass estimates for walleye pollock	143
C-2.	CPUE, population, and biomass estimates for Pacific cod	146
C-3.	CPUE, population, and biomass estimates for sablefish	149
C-4.	CPUE, population, and biomass estimates for yellowfin sole	152
C-5.	CPUE, population, and biomass estimates for rock sole	155
C-6.	CPUE, population, and biomass estimates for flathead sole and Bering flounder	158
C-7.	CPUE, population, and biomass estimates for Alaska plaice	161
C-8.	CPUE, population, and biomass estimates for Greenland turbot	164
C-9.	CPUE, population, and biomass estimates for arrow-tooth and Kamchatka flounder	167
C-10.	CPUE, population, and biomass estimates for	170

Table C-1.--CPUE, population, and biomass estimates for walleye pollock.

STANCARD TRANK FIDTH = 16.5400CC00 METERS

STRATUM	AFEA SQ. HI.	SAMPLES	TOTAL Fauls	HAULS WITH Catch	HAULS WITH NUMS.	HAULS WITH L-F	CPUF KG/HA	VARIANCE CPUE KG/HA	CPUE NO/HA	VARIANCE CPUE NOZHA
10≄ SUETOTAL	22,950. 22,950.	.256968492E+07	5 7 5 7	5 3 5 3	53 53	50 50	128.77034 128.77034	-10283CE+04 -102830E+04	161.09229 161.09229	-167818E+04 -167818E+04
	2277300	01307004722.07	,	,,,	,,	70	120417034	11020302.04	10120/22/	#101C1CL-04
20*	16,030.	. 179494262E+07	38	37	37	37	195.54871	-154633E+04	297-99309	.429714E+04
21*	1,720.	.1925 1532 8E+06	6	5	6	6	134.39973	.274363E+04	222.22598	-87840EE+04
SUETOTAL	17,750.	-198747795E+07	44	43	43	43	139.62495	-428996E +04	290.65360	•130812E+05
30±	12.731.	•14254645 CE+07	28	23	28	28	143.56086	-744695E+03	341.19600	-40669 6E+04
32±	1.271.	-142350928E+06	6	6	6	6	480.09893	-832474E+05	633-94944	-124374E+06
SUBTUTAL	14,002.	.1567 8154 3E+07	34	34	34	34	174.11707	-839921E+05	367.77676	-12844CE+06
40*	21,612.	-241988980E+07	56	5 4	54	51	9.49610	-454370E+01	16.64183	-112057E+02
4 1±		.348771536E+O6	13	13	13	13	7.46037	.255432E+01	10.42579	-357877E+01
42*	2,009.	-224990C02E+06	5	5	5	4	1.02756	-279208E+CO	4.93274	-349974E+01
SUE TOTAL	25,736.	•259365139E+07	74	72	72	6.8	8-62247	-737723E+01	15.03763	-182842E+02
50*	4,345.	.186525370E+06	11	9	9	5	4.71391	-214695E+02	8.87637	-205225E+02
52≥	2,317.	-259397449E+06	9	8	8	8	0.73300	-913346E-01	6.41461	.382441E+01
SUBTOTAL	5 • 562 <u>•</u>	-745922819E+06	20	17	17	17	3.32953	-215613E+02	8.02028	.243473E+02
€Q≠	22,793.	.25521853 8E+07	56	55	55	51	24-22410	-576613E+02	29-45 987	.103639E+03
€1*	975.	.109212363E+06	3	3	3	3	35.87453	-872015E+03	50.35782	•175581E+04
SUETUTAL	23,769.	•266139775E+07	59	5.8	5.8	54	24.70218	-929677E+03	3C-31744	-1 85 945E+04
70*	15,921.	-189466687E+07	39	38	38	3 &	165.19853	-122244E+04	325-59591	•5 37042E+04
71 ÷	4,231.	.473731238E+06	19	17	17	17	40.92216	.570 65 8E +03	77.53524	-179985E+04
72*	2,445.	-2739 C3618E+06	9	9	9	5	327.57341	-171243E+05	458.38778	-202736E+05
SUB TOTAL	23,598.	. 264230172E+07	67	64	64	64	159.74929	-189176E+05	294.88711	-274438E+05
TOTAL	135,466.	• 1516'8252CE+08	35 5	341	341	3 3 G	98.68655	•109187E+06	163-43590	-172546E+06

Table C-1.--CPUE, population, and biomass estimates for walleye pollock (cont'd).

STRATUM	MEAN NT KG	PSPULATION	VARIANCE POPULATION	METHOD USED	EFF. CEG. FREEDCM	CONFIDENCE PERCENT	E LIMITS - PCPULATI LOWER	ON UPPER
1 C* SUETOTAL		.126803468E+10-	.103980432E+18	1	56.00000 56.00000	95.0 95.0	-621421827E+09 -621421827E+09	.191464754E+10 .191464754E+10
20* 21* Sustutal	0. 604778	-163645021E+10 -131665852E+09 -176951607E+10	.129907187E+18 .305541573E+16 .132562633E+18	1 1	37.00000 5.00000 41.95505	95.0 95.0 95.0	.907757781E+09 0. -103296074E+10	.236914265E+10 .273179973E+09 .250607139E+10
±30± 32* Subtotal	0.757314	-14 E933039E+10 -27 E433 969E+09 -17 EE26 436E+10	.775246613E+17 .236485153E+17 .101173177E+18	1 1	27.00000 5.00000 13.27862	95.0 95.0 95.0	.918466889E+09 0- .107921737E+10	-206117390E+10 -671804245E+09 -245331136E+10
4 C* 41* 4 2* Sue total	0.715569	•123359646E+09 •111384936E+08 •335960150E+07 •137897741E+09	• 6157215106+15 • 406478585E+13 • 166232032E+13 • 621468617E+15	1 1 1	55.00000 12.00000 4.00000 60.57013	95+0 95+0 95+0 95+0	-7 35 758 470E+08 -6 73 454 867E+07 0. -880 391 567E+08	-173143445E+09 -155424385E+08 -697372610E+07 -187756286E+09
50* 52* Suetotal	0.531063 C.114270 C.415139	•132287068E+08 •505657236E+07 •183256792E+08	.455829015E+14 .241462305E+13 .475975245E+14	1	10.00000 8.00000 11.27770	95.0 95.0 95.0	0. -151366573E+07	.282710734E+09 .868027900E+07 .335742613E+03
€0± €1± Subtotal	C. 822274 0.712392 0.814785	.23C31361CE+09 .166467143E+08 .247160324E+09	•633430608E+16 •196505177E+15 •653081125E+16	1 1	55.00000 2.00000 13.41669	95.0 95.0 95.0	•706354954E+08 0• •726033049E+08	.389991724E+09 .771662992E+08 .421717344E+09
70* 71* 72* Suetotal	0.507373 .0.527788 0.714621 0.541730	.18 8 9 6 8 C 10E + 10 .11 2 5 1 4 2 6 7 E + 0 9 .38 4 5 9 8 2 3 4 E + 0 9 .2 3 8 6 7 9 2 5 2 E + 1 0	-1808\$52375+18 -3790125245+16 -1427180055+17 -1\$85571635+19	1 1 1	38-00000 18-00000 -8-00000 46-74551	95.0 95.0 95.0 95.0	-102743331E+10 0- -109112771E+09 -146614345E+10	-2751 92689E+10 -242414312E+09 -660083697E+09
TCTAL	0-000604	.755399147E+10	.544273652E+18		77.40918	95.0	-612267396E+10	-906530899E+10

Table C-1.--CPUE, population, and biomass estimates for walleye pollock (cont'd).

STRATUE	BIOMASS MT	VARIANCE BIOMASS	EFF. DEG. FREEDON	C CNFIDENCE PERCENT	E LIPITS - BIOMASS LOHER	UPPER
10+ Subtotal	-101361308E+07 -101361308E+07	-637134790E+11 -637134790E+11	56.00000 56.00000	95.0 95.0	-507457321E+06 -507457321E+06	-151976884E+07
20*	-1 C7515207E+07	.467471453E+11	37.00000	95.0	.636857727E+06	-151350640E+07
21*	•792657009E+05	-954332976E+09	5.00000	95.0	0.	.158689753E+06
SLETGTAL	-115444777E+07	.477014823E+11	41.99165	95.0	.713277173E+06	.159561836E+07
30∗	•62 (857 66 4E +06	.141986283E+11	27.00000	95.0	-382345450E+06	.871369879E+06
12∗	-205347379E+06	.158286696E+11	5.70000	95.0	0 -	-532810136E+06
SUETCTAL	.83€205043E+06	-300272994E+11	7.05863	95.0	-426389699E+06	-124602139E+07
40+	-703910202E+05	.249663035E+09	55.00000	95.0	.3e7C66O84E+05	.1C2075432E+06
41+	.79703616CE+C4	.291547770E+07	12.00000	95.0	-421220473E+04	-117285185E+05
42*	-7 C E 182040E + 03	.132619287E+06	4.00000	95.0	0.	-171911605E+04
SUBTOTAL	-79(695638E+05	-252711133E+09	60.62920	95.0	.472757825E+05	-110863345E+06
50∗	•702527713E+04	.476864387E+08	10.00000	95.0	0 -	.224108132E+05
52≄	-582430168E+03	.576659344E+05	8.00000	95.0	-145051498E+02	-115335519E+04
SLEICTAL	•76C770729E+04	- 477441047E+08	10.02955	95.0	0.	.23C025432E+05
€0•	•1 & \$380947E +06	-352421286E+10	55.00000	95.0	.7 03391182E+05	.30E422776E+05
€1*	-12(014718E+05	.975934716E+08	2.00000	95.0	0.	-545105542E+05
SUETOTAL	•201382419E+06	.362180633E+10	15.15983	95.0	•7 31 3575 95E+05	-325629079E+05
70≠	•95 8772 410E+06	.411762065E+11	38.00000	95.0	-547394292E+06	-137015053E+07
71*	-593636686E+G5	.120211275E+10	18.00000	95.0	0.	-132228485E+U6
72*	-274841876E+06	-120548545E+11	8.00000	95.0	-216555242E+05	-528028228£ +06
SUBTOTAL	-12529979EE+07	-544331738E+11	23-31340	95.0	.81C281260E+06	-177571465E+07
10TAL	•45E532354E+07	-195797695E+12	35.14422	95.0	.368102342E+07	-548962365E+07

Table C-2. --CPUE, population, and biomass estimates for Pacific cod.

STANDARD TRAME FIDTH = 16.5400CCGO METERS

STRATUM	AREA SJ. MI.	SAMPLES	TOTAL HAVES	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	CPUE KG/HA	VARIANCE CPUE KG/HA	CPUE NO/HA	VARIANCE CPUE NO/HA
10± Subtotal	22,950. 22,950.	.256968492E+07	57 57	57 57	. 57 5 7	31 31	28.52104 28.52104	.216772E+02	22 • 57 6 90 22 • 57 6 90	.160065E+02
20 €	15,030.	• 1794 9425 ZE+07	38	38	38	23	12.92007	-352312E+01	4-42639	.490572E+Q0
21=	1,720 .	-1925 3532 8E+06	 6	ő	6	6	14.47910	-159394E+02	11-12428	.301278E+02
SUBTOTAL	17,750.	-198747795E+07	. 44	44	44	29	13.07110	•19462€E +02	5.07524	.306165E+02
3G*	12,731.	•142546450E+07	28	27	27	27	35.49034	- 304 382E +02	12.36251	.524662E+01
32*	1,271.	-142350928E+06	ó	6	6	€	73-70469	-673045E+03	55.15942	-126439E+03
SUETOTAL	14,002.	- 1567 ₹154 3E+07	34	33	33	33	38.95004	.703483E +03	16.24628	-13168EE+03
40∗	21,612.	• 2419 88980E+07	56	51	51	4 8	15.97656	.420945E+01	10.18707	.246773E+01
41#	3,115.	.348771586E+06	13	13	13	12	7.87072	.432599E+01	E-16200	.422945E+01
42*	2,009.	-224990002E+06	5	4	4	2	0.25357	.37751 Ez -01	1.39872	•139175E+01
SUBTOTAL	26,736.	. 2993 6513 9E+07	74	, 58	5 B	62	13.85052	.857720E +01	9.29065	-508597E+01
5 C+	4,345.	.486525370E+06	11	4	4	4	3.89782	-15146 CE +02	410333	.157745E+02
52*	2.317.	• 259397449E+05	9	8	8	3	0.18257	.785989E-02	0.96623	-190442E+00
SUBTOTAL	5,562.	.745922219E+06	20	12	12	7	2.60583	.151539E+02	3.01275	.159654E+02
€0*	22,793.	.255218538E+07	56	5 6	56	3 8	13.70658	.338592E+01	13.61221	.609889E+01
61∗	975.	-109212363E+06	3	3	3	3	7.04752	-189620E+01	7.47956	.602656E+01
SUBTIGIAL	23,769.	.266139775E+07	59	59	5 \$	4 1	13.43332	.528211E 401	13-36057	.121754E+02
70*	16,921.	-1d9466687E+07	39	37	37	3 4	36.71777	-403057E+02	12.64603	-29210CE+01
7 1≄	4,231.	.473731238E+06	19	19	19	18	13.90940	.784848E +C1	27.09895	.757062E+02
72≈	2,446.	.27340361 EE +06	9	9	9	9	38. 8 9660	.75602CE+02	41.49499	₀129561E+03
SUETOTAL	23,598.	-264230172E+07	€7	65	65	61	32.85438	-123756E+03	18.22777	.2080885+03
TETAL	135.466.	.15168252CE+08	35 5	338	338	264	21.51340	.897392E +03	13-67053	-422578E+03

Table C-2.--CPUE, population, and biomass estimates for Pacific cod (cont'd).

STRATUM	MEAN WIKG	FOPULATION	VARIANCE PCPULATION	METHOD USED	EFF. CEG. FREEDON	CONFIDENCE PERCENT	LIMITS - POPULATIO LOWER	ON UP?ER
1 C* Sue total	1-263234 1-263234	.177713578E+09	•991767695E+15 •991767695E+15	1	56-00000 56-00000	95.0 95.0	•114563556E+09 •114563556E+09	.240863600E+09
20± 21± Subtotal	2.913271 1.301576 2.575461	.243375525E+08 .656083235E+07 .306983849E+08	.148335503F+14 .1C4795293E+14 .253130796E+14	1	37-00000 5-0000 7-43454	95.0 95.0 95.0	.165214507E+08 0. .189995720E+08	.321536544E+08 .155473277E+08 .427971979E+03
30* 32* SUBTOTAL	2.870805 1.335212 2.397794	.535808146E+03 .246522910E+08 .766331056E+08	.100033456E+15 .240411020E+14 .124074558E+15	1	27.00000 5.00000 15.59532	95.0 95.0 95.0	.334573823E+08 .114462342E+08 .542961609E+08	-745042469E+08 -366583479E+03 -101770050E+09
4 C* 4 1* 4 2* SU6 TOT AL	1.568317 0.964312 0.181284 1.490802	.755129634E+08 .871995679E+07 .963987575E+06 .851969077E+08	•135594417E+15 •482751466E+13 •661059739E+12 •141082991E+15	1 1 1	55-00000 12-00000 4-00000 65-86014	95.0 95.0 95.0 95.0	.521628266E+08 .388400633E+07 0. .614768690E+08	.988631002E+08 .135559073E+08 .322103043E+07 .106916947E+09
50* 52* Subtotal	0.949788 0.183951 0.864932	-611613227E+07 -7677590225+06 -688399130E+07	.350374036E+14 .120235718E+12 .351576433E+14	1	1C-COCOO E-COCOO 10-08384	95.0	0. 0. 0.	-193041993E+03 -156737834E+07 -200945680E+08
€C* €1* Suetotal	1.005933 0.942200 1.005446	-10 6418 555E +09 -25 C231423E +07 -10 8920 869E +09	.372758943E+15 .674475342E+12 .373433419E+15	1 1	55.00000 2.00000 56.99018	95.0 95.0 95.0	.676829837E+08 0. .701908557E+08	.145154121E+09 .603621527E+07 .147650883E+09
70* 71* 72* Subtotal	2.903503 .0.513282 0.937380 1.802436	-732944810E+08 -393243023E+08 -34815286CE+08 -147534069E+09	.950214357E+14 .159422007E+15 .512056453E+14 .3456450E9E+15	1 1 1	36.00000 16.0000 8.0000 25.99083	95.0 95.0 95.0 95.0	•536325756E+08 •127965662E+08 •127926062E+08 •109235290E+09	.931563663E+08 .658520384E+08 .568379653E+08 .1 #5832848E+09
TOTAL	0-001574	-635180806E+03	.203647547E+16		130.56027	95.0	•545 E28 913E+09	•7245 32699E+09

14

Table C-2.--CPUE, population, and biomass estimates for Pacific cod (cont'd).

STRATUM	SIUHASS NT	VAFIANCE BIOMASS	EFF. DEG. FREEDCM	CONFIDENC PERCENT	E LIMITS - BIOMASS LOWER	UPPER
10≥	-224502750E+06	.134312231E+10	56.00000	95.0	.151 C51559E+06	.297953940E+06
Sue Tütal	-224502750E+06	.134312231E+10	56.00000	95.0	.151 C51559E+06	.297953940E+06
20*	-71 C381 744E + 05	.106507853E+09	37.00000	95.0	-501159028E+05	.919604460E+05
21*	-853942 C41E + C4	.554430272E+07	5.00000	95.0	-248565561E+04	.145931852E+05
Suetotal	-795775 548E + 05	.112052156E+05	36.25649	95.0	-580554439E+05	.101059746E+06
30*	•154968368E+06	.500343873E+09	27.00000	95.0	-1 C5 438655E+06	.204498081E+06
32*	•321389661E+05	.127972306E+09	5.00000	95.0	-3 C5 451359E+04	.612234226E+05
Subtotal	•187107336E+06	.708316679E+09	16.54582	95.0	-1 30 685191E+06	.243529482E+06
40*	•118428241E+06	.231296954E+79	55.00000	95.0	.879314960E+05	•148924985E+06
41*	•846876110E+04	.494221929E+07	12.00000	95.0	.356460382E+04	•132529164E+05
42*	•174755306E+03	.179315369E+05	4.00000	95.0	0.	•546485825E+03
Sue fotal	•127011757E+06	.236257105E+09	63.23892	95.0	.962858131E+05	•157737701E+06
SO±	•5 8 (\$02724E +04	- 336405307E+08	10.00000	95.0	0 -	.197315292E+05
52±	•14 5068 833E +03	- 49625C252E+04	E.00C0C	95.0	0 -	.307515076E+03
Suetotal	•595409607E +64	- 336454932E+08	10.00361	95.0	0 -	.188775511E+05
60*	-107156336E+06	.206944492E+09	55.00000	95.0	.782945763E+05	-136018095E+06
61*	-235767934E+04	.212216365E+06	2.00000	95.0	.375416259E+03	-433994243E+04
Suetotal	-105514015E+06	.207156699E+09	56.55590	95.0	.806676861E+05	-138360344E+06
70* 71* 72* SUETUTAL	•213101068E+06	.135764090E+10	38.00000	95.0	-138402810E+06	.287799327E+06
	•201844530E+05	.165273286E+08	18.00000	95.0	-116430860E+05	.287258200E+05
	•326351676E+65	.532208568E+08	8.00000	95.0	-158122922E+05	.494580435E+05
	•265520685E+06	.142738909E+10	47.65711	95.0	-189843375E+06	.341993003E+06
TETAL	.995588238E+06	.406793953E+10	96.46367	95.0	.872792801E+06	•112636367E+07

Table C-3 .-- CPUE, population, and biomass estimates for sablefish.

STANDARD TRANL FIDTH = 16.54000CO METERS

STRATUM	AREA SQ. MI.	SAMPLES	TOTAL Fauls	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	C P U E K G / H A	VARIANCE CPUE KG/HA	CPUE NG/HA	VARIANCE CPUE NO/HA
10*	22,950.	- 2569 E8492E+07	57	1	1	0	0.00202	.409776E-05	0.00372	.138311E-04
SUETOTAL	22,950.	•2569584928+07	5 7	1	1	0	0.00202	-409776E-05	0.00372	-138311E-04
20≄	15,030.	•179494262E+07	36	12	12	2	1.07312	.308364E+GO	0.70337	-123292E+00
21=	1,720.	-1925 3532 EE+06	ó	0	0	0	0.00000	0 -	0.00000	0 -
SUBTOTAL	17,750.	•198747795E+07	44	12	12	2	0.96916	-308864E+00	0.63523	-123292E+00
30*	12,731.	-14254645CE+07	28	0	0	0	0.00000	0-	0.00000	3 .
32*	1,271.	.142350928E+06	6	0	0	Ō	0.00000	0.	0.00000	0 -
SUBTGTAL	14-002.	. 1567 8154 35 +07	34	0	0	Ö	0.00000	0.	0.00000	0 -
40≄	21,612.	.241986980E+07	56	0	0	0	0.00000	0.	0.00000	0 -
41*	3,115.	-348771586E+06	13	0	0	0	0.00000	0.	0.00000	0 .
42±	2,009.	-224990002E+06	5	0	C	С	0.00000	0 -	0.00000	0 -
SUETOTAL	25,736.	• 299365139E+07	74	0	0	0	0.00000	0 •	0-00000	0 -
5 C *	4,345.	.486525370E+06	11	0	0	0	0.00000	0	0.00000	0.
52*	2,317.	·259397449E+06	9	0	0	0	0.00000	0.	0.00000	J .
SUETOTAL	ô, 662 .	.745922819E+06	20	0	0	0	0.00000	0 -	0.00000	0 -
€0*	22,793.	.255218538E+07	5 6	0	0	0	0.00000	0 -	0.00000	0 -
61*	975.	.109212363E+06	3	0	0	G	0.00000	0.	0.00000	0 -
SUBTOTAL	. 23,769.	-2661 39775E+07	59	0	0	0	0.00000	0 •	0.00000	0 .
70*	16,921.	. 1894 66687E+07	3 9	5	5	1	0.57026	-730731E-01	0.28611	•173559E-01
71≏	4,231.	- 47 37 31 23 EE+0 6	19	0	0	0	0-00000	0.	0.00000	0.
72*	2,446.	. 273903618E+06	9	٠ 0	0	c	0.00000	0.	0.00000	0 •
SUETOTAL	23,598.	.2642301725+07	67	5	5	1	0.40890	-730731E-01	0-20516	-1735598-01
TOTAL	135,466.	.1516 825208+08	355	18	18	3	0.19856	-3E1941E+00	0-11960	-140662E+CO

5

Table C-3.--CPUE, population, and biomass estimates for sablefish (cont'd).

STEATUE	MEAN WT KG	FOPUL AT ION	VARIANCE POPULATION	METHOD USED	EFF. DEG. FREEDOM	CONFIDEN	CE LIVITS - PCPULAT LOWER	TON UPPER
10* Suetotal		-292741504E+05 -292741504E+05	. 856975883E+09 . 856975883E+09	1	56.00000 56.00000	95-0 95-0	0.	-879761406E+05
20* 21* Suetotal	0-000000	.386731594E+07 0. .386731594E+07	.372725329£+13 0. .372725329£+13	1	37.00000 0.0000 37.00000	95.0 95.0 95.0	0 • 0 • 0 •	.778124071E+07 0. .778124071E+07
30* 32* Subtotal	0.000000	0. 0. 0.	0. 0. 0.	1	0.00C00 C.00C0C	95.0 95.0 95.0	0 • 0 • 0 •	0. - 0. 0.
40* 41* 42* Sue tutal	0.000000 0.000000		0 - 0 - 0 -	1 1 1	C.00C0C C.00C0O C.C0COC	95 - 0 95 - 0 95 - 0	0 - 0 - 0 -	0- 0- 0-
50* 52* Suetotal	0.000000	0.	0. 0. 0.	1	0.00000	95.0 95.0 95.0	0.0.0.	0. 0. 0.
€0* €1* Suetotal			0. 0.	1	0-0000C 0-0000C 0-00000	95.0 95.0 95.0	0 - 0 - 0 -	0. 0. 0.
7G* 71* 72* Suetctal	1. 993127 0.000000 0.00000 1. 993127	.166052492E+07 0. 0. .166052492E+07	.5E4610088E+12 0. 0. .5E4610089E+12	1 1 1	3 8 - 0 0 C 0 C C - 0 0 C 0 O O - 0 C 0 O 3 8 - 0 0 C C C	95.0 95.0 95.0 95.0	.110455412E+06 0. 0. .110455412E+06	.321059443E+07 0. 0. .321059443E+07
ICTAL	0.001650	•555711 501E+07	.431272035E+13		46.09266	95.0	•137753044E+07	-973669958E+07

Table C-3.--CPUE, population, and biomass estimates for sablefish (cont'd).

STRATEM	DIOMASS MT	VARIANCE BIOMASS	EFF. DEG. FREEDCM	C CNFIDEN PERCENT	CE LIMITS - BIOMASS Lower	UPPER
1 C* Sue total	•155341842E+02 •155341842E+02	.253898226E+03	56.00000 56.00000	95.0 95.0	0. 0.	-478362071E+02 -478862071E+02
20* 21* Ste101AL	.59(029217E+04 0. .59(029217E+04	.933730093E+07 0. .933730092E+07	37.00000 c.0000 37.00000	95.0 95.0 95.0	0 - 0 - 0 -	.120951123E+05 0. .120951123E+05
30# 32* Suetotal	0.	0. 0. 0.	0.00000 0.00000 0.00000	95.0 95.0 95.0	0. 0. 0.	0. 0. 0.
4 () # 4 1 * 4 2 * Sue tut al	0 - C - O - O -	9. 0. 0.	0.0000 0.0000 0.0000 0.0000	95.0 95.0 95.0	0. 0. 0.	0- 0- 0-
50* 52* SUE10TAL	0 • 0 • 0 •	0 - 0 - 0 -	0.00c0c 0.00c0c	95.0 95.0 95.0	0. 0.	0. 0. 0.
€ 0 * € 1 * Sue 10 t al	0.00.00.00	0.	0.00000	95.0 95.0 95.0	0 . 0 . 0 .	0. 0.
7 G* 7 1* 72* SUE TGT AL	-33(963675E+04 C- 0- -33(963675E+04	.246136720F+07 0. 0. .246136720E+07	38.00C0C 0.00C0C 0.00C0C 38.00CGC	95.0 95.0 95.0 95.0	-132352109E+03 0- 0- -132352109E+03	-646692139E+04 0- -646692139E+04
TOTAL	.922585311E+04	.117989221E+08	54.92141	95.0	.233431107E+04	-161174151E+05

Table C-4.--CPUE, population, and biomass estimates for yellowfin sole.

STANDARD TRANK FIRTH = 16.54000000 METERS

STRATUM	AFEA SQ. MI.	SAMPLES	TOTAL HAULS	HAULS WITH Catch	HAULS WITH NUMS.	HAULS WITH L-F	CPUE KG/HA	VARIANCE CPUE KG/HA	CPUE NO/HA	VARIANCE CPUE NO/HA
10± SUETOTAL	22,950.	.256968492E+07	57	57	57	57	132.81460	.298661E+03	590-73068	-609341E+04
205 IOTAL	22,950 .	-256968492E+07	57	5 7	57	57	132.81460	.298661E+03	590.73068	.609341E+04
26*	15,030.	-179494252E+07	38	18	18	16	16.16598	•223311E+02	52.54711	-361831E+03
21*	1,720.	•192535328E+06	6	6	6	5	15.40799	.5375222+02	44.11255	.458407E+03
SUBTOTAL	17,750.	-198747775E+07	44	24	24	21	16.09255	.760833E+02	51.73002	-820237E+03
30±	12,731.	•142546450E+07	28	0	0	0	0.00000	0 .	C.00000	J .
32*	1,271.	•142350928E+06	6	5	5	4	0.32915	.607661E-02	0.93368	.575874E-01
SLETOTAL	14,002.	-156781543E+07	34	5	5	4	C.02989	.607661E-C2	0.03477	.575874E-01
40≄	21,612.	-241988980E+07	56	56	56	56	109.41991	-133564E+03	498.99656	-327645E+04
41*	3,115.	-348771586E+06	13	1 3	13	13	99.12898	-245641E+C3	356.71149	~29720CE+04
42 *	2,009.	- 224950002E+D6	5	5	5	5	11.53410	- 023595E+01	35.54672	.722958E+02
SUBTOTAL	26,736.	-299365139E+07	74	74	74	74	100.86430	. 387440E +03	447.58891	-632079E+04 -
50*	4,345.	.4865253/0E+06	11	10	10	1 C	0.27530	.708914E-02	0.83011	.621748E-01
524	2,317.	.259397449E+06	9	8	8	8	11.97314	.112925E *02	36.19155	-106914E+03
SUBTOTAL	6,662.	.745922819E+06	20	18	18	1 &	4 • 34 327	-112596E+02	13.15980	.106876E+03
€0≈	22,793.	.25521853e[+07	56	5 6	56	55	151.32822	-202035E+03	730.00275	.470502E+04
61*	975.	.109212363E+06	3	- 3	3	3	46.92395	-142986E+03	160.60246	-207517E+04
SUBTOTAL	23,769.	-266139775E+07	5 9	59.	5 9	5 €	147.04391	-345020E403	706.63700	-67801 9E+04
70*	16,721.	.189466687E+07	39	17	17	14	3.75739	.245209E+01	10.59335	.219445E+02
71*	4,2310	.473731238E+06	19	18	18	18	37.71870	-132016E+03	130.80767	-218592E+04
72★	2,445.	.273903618E+06	5	7	7	7	13.76018	-434015E+02	38.81028	.348255E+03
SUBTOTAL	23,598.	.264230172E+07	67	42	42	3 9	10.68312	-177 66 9E +03	35.07125	.255711E+04
TOTAL	135-466 .	.15168252CE+08	355	279	279	271	72.42947	•129638E •04	325.94324	•226787E+05

Table C-4 .--CPUE, population, and biomass estimates for yellowfin sole (cont'd).

STRATUR	MEAN HIKG	FOPULATION	VARIANCE POPULATION	METHOD USED	EFF. CEG. FREEDCM	CONFIDENCE PERCENT	E LIHITS - POPULAT: LOWER	ION UP?ER
1 C+ Sue tot al	-	.464592441E+10 .464592441E+10	.377548831E+16 .377548381E+18	1	56.00000 56.00000	95.0 95.0	.341779942E+10 .341779842E+10	.5 88205040E+10
20± 21± Subtotal	0.345238	-2 6 6 9 13 8 4 CE + 0 9 -2 6 C 16 5 13 8 E + C 8 -3 1 4 9 3 5 3 5 4 E + 0 9	.105385421E+17 .155450102E+15 .110979922E+17	1	37.00000 5.00000 41.52787	95.0 95.0 95.0	.768 686 315 5 + 08 0. .102 139 665 E + 09	.500949049E*09 .610700521E*08 .5277310442*09
3C* 32* Subtotal	0.352527	0. .407130860E+06 .407130860E+06	0. .109496712E+11 .109496712E+11	1	0.00000 5.00000 5.00000	95.0 95.0 95.0	0. -138099680E+06 -136099680E+06	0. .576152040E+06 .676162040E+06
40* 41* 42* Sue tot al	0.277897	.365887476E+10 .381096255E+09 .244584843E+08 .416446950E+10	.190033190E+18 .339222340E+16 .343393782E+14 .183455753E+18	1 1 1	55.00000 12.00000 4.00000 62.54534	95.0 95.0 95.0 95.0	.264 E04 0 80 E + 10 .254 1 E5 2 CO E + 09 .823 1176 E1 E + 07 .324 E111 1 00 E + 10	.454970871E+10 .508007310E+09 .407657917E+08 .496082799E+10
50* 52* Suetotal	0.330827	•131165714E+G7 •287573855E+08 •30(69042€E+08	.138095186E+12 .674352844E+14 .67577379GE+14	1 1	10.0GCGC 8.0GCGC 8.0GCGC 6.02681	95.0 95.0 95.0	.4 E 3 7 C 6 4 7 7 E + 0 6 .9 E 2 C 1 E 4 9 U E + 0 7 .1 1 1 1 2 4 6 3 1 E + 0 8	•213960780E+07 •476945861E+08 •490256221E+08
EC* E1* Subtotal	0.292175	.57(707C00E+10 .537279768E+08 .57(079798E+10	.28756685)E+18 .232246876E+15 .287799097E+18	1	55.00000 2.00000 56.31883	95.0 95.0 95.0	.463118641E+10 0. .468560660E+10	-678295359E+13 -119304183E+09 -683598935E+10
70* 71* 72* SUETOTAL	0.288352 0.354550	.614812611E+08 .185813897E+09 .325627506E+08 .283863909E+09	.735168861E+15 .460520544E+16 .245157877E+15 .558553213E+16	1 1 1	3 & . 0 0 0 0 0 1 & . 0 0 0 0 0 & . 0 C C C C 2 4 . 7 3 9 9 5	95.0 95.0 95.0	-636371780E+07 -466317861E+08 0. -129552718E+09	-11 65 98 80 4E +09 -3330 0 900 8E +09 -6959 27 812E +03 -4381 751005 +09
TOTAL	0.00222	-151444673E+11	. 665562844E+18		173.17650	95.0	-133C23921E+11	-169865426E+11

7CT

Table C-4.--CPUE, population, and biomass estimates for yellowfin sole (cont'd).

STRATUR	BICMASS MT	VARIANCE Blumass	EFF. DEG. FREEDOM	CONFIDENC PERCENT	E LIPIIS - BICMASS LUWER	UPPER
10*	-104544741E+07	•185051152E+11	56-00000	95.0	.772809055E+06	-131808577E+07
Subtotal	-104544741E+07	•185051152E+11	56-00000	95.0	.772809055E+06	
20*	•88 8851 492E +05	-675093470E+09	37-00000	95.0	.362107035E+05	•141559595E+06
21*	•9087 26 096E +04	-1E6969122E+08	5-00000	95.0	0.	•202042460E+05
Sue total	•97 5724 102E +05	-693790382E+09	41-63836	95.0	.447671273E+05	•151177693E+06
30*	0 -	0.	0.00C00	95.0	0.	0.
32*	-143524680E+03	.115540761E+04	5.00C0C	95.0	.5613308C4E+02	.230916279E+03
Suetutal	-143524680E+03	.115540761E+04	5.00C00	95.0	.561330804E+02	.230916279E+03
4 C+	-811088876E+06	-733d91718E+10	55.00000	95.0	.6393C4161F+06	.982873591E+06
41*	-165965427E+06	-280372400E+09	12.00000	95.0	.694195445E+05	.142391310E+06
42*	-794920191E+04	-391196666E+07	4.00000	95.0	.245863695E+04	.134397669E+05
Subtotal	-924943505E+06	-762320155E+10	67.00830	95.0	.750525336E+06	.109936167E+07
50*	-41C284196E+03	.157455343E+05	10-90000	95.0	-130712059E+03	.689856334E+03
52*	-951371528E+04	.712974982E+07	8-00000	95.0	-335632631E+04	.156711023E+05
Subjectal	-952399948E+04	.714549535E+07	8-02892	95.0	-3755E1719E+04	.160381813E+05
€0≄	-118306504E+07	.123482049E+11	55.00000	95.0	.9 E 0 120 0 10 E + 0 6	-1406 01006E+07
€1≄	-156579461E+05	.160025371E+08	2.0000	95.0	0 .	-3251 13107E+05
Suetotal	-119876298E+07	.123642075E+11	56.77543	95.0	.975 9 0 7 0 5 0 E + 0 6	-142161892E+07
70* 71* 72* Sløtotal	.216069975E+05 .547350177E+05 .115451171E+05 .866671323E+05	. £25952793E+08 . 277558594E+09 . 305529611E+08 . 391146835E+09	38.00000 19.00000 8.00000 30.16545	95.0 95.0 95.0	.328250079E+04 .155543761E+05 0.	.402314942E+05 .899156593E+05 .246175915E+05 .126472649E+06
TOTAL	-33€528097€+0 7	.395846081E+11	176.22160	95.0	-297134935E+07	.375921258E+07

Table C-5 .--CPUE, population, and biomass estimates for rock sole.

STANDARD TRAME MIDTH = 15.54000000 METERS

NUTAATE	AREA SQ. MI.	SAMPLE S	TOTAL	HAULS WITH Catch	HAULS WITH NUMS.	HAULS WITH L-F	C P U E K G / H A	V ARIANCE CPUE K G/HA	CPUE No/ha	VARIANCE CPUE NOZHA
10± SUBTOTAL	22,950. 22,950.	- 2569 6849 2 <u>2</u> +07 - 2569 6849 2E+07	57 57	57 57	57 57	47 47	74.17839 74.17839	.841472E 402 .641472E 402	410.34210 410.34210	.380207E+04 .380207E+04
20≄	16,030 .	.179454262E+07	38	26	26	11	9.93378	.805162E 401	40.35234	.189875E+03
210	1.720 .	. 1925 35 32 8E+06	6	6	6	5	18.50116	.997674E+C2	63.55960	.866971E+03
SCETOTAL	17,750。	·158747795E+07	44	32	32	16	10.76374	-107819E+03	42.60052	-105885E+04
30±	12,731.	. 142546450E+07	23	15	15	1	0.23969	-828208E-02	0.54561	.20098€E~01
32±	1,271.	-142350928E+06	5	6	5	0	1.81238	-496464E+CO	5.46101	.246347E+01
SUETOTAL	1 4, 002 .	.156781543E+07	34	21	21	1	0.38249	.504746E+00	0.99191	.248357E+01
40∞	21,612.	.241988930E+07	56	55	5 5	27	5.33499	.10585€E +01	67.61151	.236045E+03
410	3,115.	•343771586E+U6	13	13	13	12	11.11386	-846275E +01	48.52196	.203974E+03
42+	2,009.	- 224990002E+06	5	5	5	С	0.13396	-106959E-02	2.17557	.350511E+00
SUBTOTAL	2.6,736.	.299365139E+07	74	73	73	39	5.61736	.952238E +01	60.46962	a440374E+03
50*	4,345 .	.4865253702+06	11	5	5	o	0.22438	-408333E-01	1.14063	-967416E+00
52*	2,317。	.259397449E+06	2	9	9	1	0.10092	98845EE-03	2.68095	.555735E+00
SUETOTAL	5,562.	-745922815E+06	20	13	13	1	0.18145	-418217E-01	1.67628	-152315E+01
€04	22,793.	.255218538E+07	56	54	54	35	18.59333	•11997CE+02	136.53073	.514675E+03
€ 1 ↔	975。	.109212363E+06	3	3	3	3	43.66262	.335333E+C2	266.21241	.545052E+03
SUETOTAL	23,769.	-266139775E+07	59	57	57	3 8	19.62207	. 4 55 30 3E +02	141.65231	.105973E+04
70≏	16,921.	.1594666876+07	39	36	36	11	2.95081	.340958E+00	6.42229	-157819E+01
71☆	4,231.	-473731238E+06	19	19	19	1 8	57.00185	.529813E+03	255.69699	-102216E+05
72•	2,445.	.2739 C3 E1 8E+06	9	9	9	3	5.10275	.366817E+01	15.55191	.258477E+02
SUETOTAL	23,598.	. 26 42 30 17 2E +07	67	64	64	32	12.86455	.533822E+03	52.06047	-102491E+05
TOTAL	135,466.	.1516825202+08	355	317	317	174	20.81804	-7 £13d £É+03	121.17532	-166141E+05

Table C-5.--CPUE, population, and biomass estimates for rock sole (cont'd).

STRATUM	MEAN WT KG	FOPULATION	VARIANCE PDPULATION	METHOD USED	EFF. DEG. FREEDCH	CONFIDENCE PERCENT	LIPI1S - PCPULATIO LOWER	N UPPER
10° Subtotal	0.180772 0.180772	-322999943E+10 -322999943E+10	.235576869E+18	1	56.00000 56.0000	95.0 95.0	.225672605E+10 .225672605E+10	.420327282E • 10 .42C327282E • 10
20° 21° SUE 10TAL	0.245176 0.291084 0.252667	-221868555E+09 -374859130E+08 -255354468E+09	.574014165E+16 .302258810E+15 .604240046E+16	1 1	37.00000 5.00000 36.09054	95.0 95.0 95.0	.682727602E+08 0. .101603363E+09	.375464349E+09 .321842700E+08 .417105572E+09
30* 32* Sue tot al	0.439308 0.331376 0.335605	.23 E2 42 21 4E +07 .23 E127 77 GE +07 .47 E369 5 83E +07	.383205880E+12 .468404415E+12 .851610295E+12	1	27.00000 5.00000 6.36767	95.0 95.0 95.0	.110968360E+07 .621683316E+06 .250554134E+07	.365516067E+07 .414087208E+07 .702185833E+07
40* 41* 42* Subtotal	0.073906 0.229348 0.061585 0.092696	-5011768238+09 -5183891938+08 -149936041E+07 -554517123E+09	.129701834E+17 .232814970E+15 .166437433E+12 .132031649E+17	1 1 1	55.00000 12.00000 4.00000 62.14834	95.0 95.0 95.0 95.0	.272E07491E+09 .185911370E+08 .3E6E92700E+06 .324783675E+09	.725550154E+09 .850867016E+08 .263205813E+07 .784250570E+09
50* 52* Sle101#L	0.196717 0.037645 0.108244	•165991145E+07 •213025414E+07 •383016559E+07	.214870705E+13 .350874493E+12 .249958155E+13	1 1	10.00000 8.00000 13.70748	95.0 95.0 95.0	0. .729354422E+06 .415191551E+06	.496581826E+07 .353115385E+07 .724513962E+07
€0± €1± SLETOTAL	0.136184 0.164014 0.133327	-106738017E+10 -890587476E+03 -115643892E+10	.314565290E+17 .610006190E+14 .315175296E+17	1	55.00000 2.00000 56.99596	95.0 95.0 95.0	-711543030E+09 -554510727E+08 -800629741E+09	•142321731E+10 •122666422E+09 •151224809E+10
70* 71° 72* Suetotal	0.459464 0.222927 0.329111 0.247108	•377734268E+08 •371051432E+09 •13C484198E+08 •421373278E+09	.531590479E+14 .215247412E+17 .181957959E+14 .215960960E+17	1 1 1	3 E • 0 0 C 0 C 18 • 0 0 0 0 0 E • 0 0 C 0 0 18 • 1 0 7 5 E	95.0 95.0 95.0 95.0	-225076426E+08 -628071548E+03 -321182284E+07 -112618507E+09	.520392110E+08 .679295708E+09 .22E350168E+08 .730128049E+09
10TAL	0.000172	.563027708E+10	-307939411E+18		103.33620	95.0	.452838520E+10	•673216896E+10

Table C-5.--CPUE, population, and biomass estimates for rock sole (cont'd).

STRATUM	SIOMASS MT	VARIANCE BIOMASS	EFF. DEC. FREECCM	CONFIDENC PERCENT	CE LIPITS - BIOMASS LOWER	UPPER
1 C÷	.583893634E+06	.521377565E+10	56.20000	95.0	.439101589E+06	.728685679E+06
Sue total	.583893634E+06	.521377585E+10	56.00000	95.0	.439101588E+06	
20≄	∘54€187 407E+05	.243409437E+09	37.00000	95.0	.229 896 4 85 E+05	.862478329E+05
21°	∘1 C5115335E+05	.347026361E+08	5.00000	95.0	0.	.26C570233E+05
Suetotal	∘655302746፫+05	.278112074E+09	19.05016	95.0	.306 259 57 2 E+05	.100434592E+06
30±	.10/661713E + 04	.157508333E+06	27.00000	95.0	.229610404E+03	.186362386E004
32±	.75(289081E + 03	.943976867E+05	5.00000	95.0	.369731568E+00	.158020843E004
Subtotal	.163690622E + 04	.252306019E+06	9.01257	95.0	.700701974E+03	.297311046E004
40≏	.355462551E+05	.581645094E+08	55-00000	95.0	.242450756E+05	.548474345E+05
41°	.115736042E+05	.965932579E+07	12-00000	95.0	.510139072E+04	.186458176E+05
42≈	.923383732E+02	.508038864E+03	4-00000	95.0	.2C6174972E+02	.164060259E+03
SLETOTAL	.515121581E+05	.678243432E+08	48-37935	95.0	.349373229E+05	.680370733E+05
50*	.334401057E+C3	.906939024E+05	10.00000	95.0	0.	.1 0 C5 37 28 0 E + 0 4
52°	.8C1924236E+02	.624033572E+03	8.00000	95.0	.225 847 048 E+02	.1 3 78 0 0 1 4 2 E + 0 3
Subjectal	.414593481E+03	.913179860E+05	10.16802	95.0	0.	.1 0 E7 86 9 d 1 E + 0 4
€0°	-145360328E+06	.733248230E+09	55.00000	95.0	.910326197E+05	.195684036E+06
61°	-146069025E+05	.375295105E+07	2.00000	95.0	.627090077E+04	.229429042E+05
SUBTJTAL	-155967230E+06	.737001131E+09	52.76612	95.0	.105443658E+06	.214490803E+06
70°	.17 1257 860E+05	.114847050E+08	38-00000	95.0	.102554506E+05	.235961215E+05
71±	.827175074E+05	.111567934E+10	18-00000	95.0	.125403383E+05	.152094677E+06
72±	.428132795E+04	.25E225151E+07	8-00000	95.0	.575727651E+03	.798692825E+J4
Suetotal	.104124621E+06	.112574680E+10	18-35700	95.0	.335064266E+05	.174742816E+06
ICTAL	• 767279458 E+05	.742680387E+10	90.95284	95.0	.755783435E+06	.113877548E+07

Table C-6.--CPUE, population, and biomass estimates for flathead sole and Bering flounder.

STANDARD TRANK FIOTH = 16.54000000 METERS

STRATUH A	FEA SQ. HI.	SAPPLES	TCTAL Fauls	HAULS HITH CATCH	HAULS WITH NUMS。	HAULS WITH L-F	CPUE KG/HA	VARIANCE CPUE KG/HA	CPUE ND/HA	VARIANCE CPUE NO/HA
		-								
100 Suetotal	22,950. 22,950.	.2569 6849 2E+07	57 57	5 0 5 0	5 0 5 0	25 25	7.85299 7.85299	.113464E+01 .113464E+01	32.97541 32.97541	-191562E+02 -191562E+02
				•			•			
204	15,030.	.179494262E+07	3.8	38	38	32	21.19741	.758928E+01	137.94577	.287323E+03
211	1,720 .	-192535328E+06	6	6	6	5	6.52639	.336155E+C1	25.61309	-370713E+02
SUETOTAL	17,750.	•158747795E+07	44	44	44	37	19.77617	.109508E+02	127.45113	.374394E+03
3 Oa	12,731.	. 1425 4645 CE+07	26	28	28	14	11.89182	.233326€ +02	38.73577	-176383E+03
32☆	1,271.	.142350928E+06	6	5	5	3 -	7.81437	-731889E+01	23.02433	-662704E+02
SUETOTAL	14,002.	-156781543E+07	34	33	33	17	11.52160	.306515E+02	37.30924	.242554E+03
4 C2	21,512.	.741988930E+07	56	44	44	16	1.13521	.358411E-01	8.05514	.259693E+01
41=	3,115.	.348771586E+06	13	13	13	10	1.68611	.876564E-01	14.45937	.777559E+01
420	2,009.	. 224990002€+06	5	5	5	4	2.23120	.543615E+00	E-61 901	-54477CE+01
SUETOTAL	26,736.	. 259365135E+07	74	. 52	62	30	1.28176	.6 67 11 3E + 00	8.94364	-158202E+02
5 Ca	4,345 .	.48652537CE+06	11	11	11	7	2.61848	-19534CE+01	12.96132	.331805E+02
52*	2,317.	.259397449E+06	9	7	7	3	0.87162	.217377E+00	3.49335	.307324E+01
SUETOTAL	6,662 .	.74592281 9E+06	20	18	18	10	2.01100	~217078E+01	9.66880	-362542E+02
€0=	22,793.	.255218538E+07	56	43	. 43	12	2.61257	.337307E400	15.98127	-11356 SE+02
€1•	975 .	109212363E+06	3	3	3	. 3	3.60905	.45935EE+CO	17.20487	.71117EE+01
SUBTOTAL	23,769.	-2661 39775E+07	59	46	46	15	2.65346	.796665E400	16.03149	-184687E+02
70±	16,921。	. 1894 6668 7E+07	39	37	37	22	8.11405	.13952@E+01	57.16115	.122102E+03
71=	4,231.	.473731238E+06	19	17	17	15	6.78356	.264035E +01	51.56289	-203555E+03
72☆	2,446.	. 2739 C361 8E+06	9	9	- 9	3	10.01455	.22018CE+02	36.57307	-296025E+03
SUETOTAL	23,598.	. 26 42 30 17 26 + 07	67	6.3	63	40	8.07252	.260537E+G2	54.02327	.626636E003
TCTAL	135,466.	- 151682520E+08	355	316	316	174	7.33620	.724252E+02	40.58712	.133343E+04

Table C-6.--CPUE, population, and biomass estimates for flathead sole and Bering flounder (cont'd).

STRATUM	MEAN WT KG	POPULATION	VARIANCE Pupulation	METHOD USED	EFF. DEG. FREEDOM	CONFIDENCE PERCENT	LIMITS - POPULATI LCHER	ON UPPER
10* SUBJUTAL		-255565265E+09 -255565265E+09	-118692442E+16 -118692442E+16	1	56-00000 56-00000	95.0 95.0	-190480854E+09 -190480854E+09	.328649676E+09 .328649676E+09
20. 21. Sue 10tal	0.220389	-758464810E+09 -174650845E+08 -775929894E+09	.868609186E+16 .302864922E+14 .671637835E+16	1 1	37-00000 5-00000 38-51320	95.0 95.0 95.0	.569522061E+09 .218787794E+07 .586854091E+09	.947407559E+09 .327422910E+08 .965005698E+09
30± 32± Suetotal	0.339396	-165139526E+09 -10(397718E+08 -175179293E+09	.336296944E+16 .126CJ6556E+14 .337557010E+16	1	27.00000 5.00000 27.90640	95.0 95.0 95.0	-499 C97 9 31 E + 0 8 -913 38 96 75 E + 0 6 -5 99 588 0 24 E + 0 8	.288369259E+09 .191561539E+09 .298399793E+09
4C* 41* 42* Subtotal	0-115610 0-258870	•597097726E •08 •154478060E+09 •554014415E+07 •810977226E+03	.142693564E+15 .E875C0577E+13 .25E757183E+13 .154156142E+15	1 1 1	55.00C0C 12.00C00 4.00C00 62.76562	95.0 95.0 95.0 95.0	.357561768E+08 .895635846E+07 .147458965E+07 .562740737E+08	-836633685E+03 -215392536E+08 -104055987E+08 -105921372E+09
50* 52* Suetotal	0.249510	•193166276E+08 •277577313E+07 •220924009E+09	.736974929E+14 .194035662E+13 .756378495E+14	1 1	10-00000 8-00000 10-54017	95.0 95.0 95.0	-189861801E+06 0- -271547569E+07	.384433937E+08 .598795467E+07 .414693221E+08
€0± €1± Subtotal		.124939572E+09 .575572174E+07 .13(695293E+09	.694126463E+15 .795929715E+12 .694922392E+15	1 1	55.00C0C 2.000C0 56.66575	95.0 95.0 95.0	-720 £10 303E+08 -191 680 488E+07 -778 £181 42E+08	-177798113E+09 -959463859E+07 -183528773E+09
76* 71* 72* Suctotal	0.131559 0.273823	-331749522E+09 -746248388E+03 -306856722E+08 -437260033E+09	.411285018E+16 .435175631E+15 .208392483E+15 .476041830E+16	1 1 1	3 & . 00 C 0 0 1 & . 00 C 0 0 8 . 00 C 0 0 5 5 . 12 4 4 2	95.0 95.0 95.0 95.0	-201735718E+09 -307551953E+08 0- -259196018E+09	.451763326£+09 .1188544822+09 .648263524E+08 .5753240432+09
TOTAL	0.000181	-188581991E+10	.189640076E+17		129.13701	95.0	•161315513E+10	-215848469E+10

Table C-6.--CPUE, population, and biomass estimates- for flathead- sole and Bering flounder (cont'd).

STRATUM	TM 22 ANDIB	VARIANCE BIOPASS	EFF. DEC. FREEDCP	CONFIDENCI PERCENT	E LINITS - BIOMASS LOWER	UPPER
1 C*	-61E146593E+05	.703023993E+08	56.00000	95-0	-450 C13 347 E+05	.786279840E+05
SUBTOTAL	•61 £146593E +05	.703023993E+08	56.00000	95-0	-450C13347E+05	.786279840E+05
20≄	•11€549352E+06	.229432278E+09	37.00000	95.0	-858417942E+05	-147256910E+06
21•	-384910684E+04	.116926485E+07	5.00000	95.0	-847147230E+03	-685086644E+04
SUBTOTAL	-12(398459E+06	.230601543E+09	39.12540	95.0	.896765318E+05	.151120386E+06
30≄	•51 \$255 51 9E +05	.444866287E+05	27.00000	95.0	.856070098E+04	•952904029E+05
72*	•3132333196+03 •34(745945E+04	.4440602676409	5.00000	95.0	.374536428E+03	.644038247E+04
SUETOTAL	•553330114E+05	.446257901E+09	27.76210	95.0	•119848865E+05	.986811362E+05
40 ±	.841486058E+04	•196936202E+07	55.00000	95.0	.560081386E+04	-112289073E+05
4 1 *	-1 EC137 163E+04	.100050446E+06	12-00000	95.0	-111213755E+04	-249060571E+04
42 =	-153772466E+C4	.258208675E+06	4.00000	95.0	-127121422E+03	.294832790E+04
SUBTOTAL	•117539569E+05	.232762114E+07	12.36661	95.0	.842955608E+04	.150783577E+05
50 ∗	•35(239056E+04	.4338650655+07	10.00000	95.0	0.	-861400714E+04
52 *	-692582269E+03	.137245617E+06	6.00000	95.0	0.	-154687861E+04
SUETCTAL	.459497283E+04	.447589527E+07	10.76808	95.0	0.	-930859961E+04
60*	.204247245E+05	.206159148E+08	55.00000	95.0	-113151691E+05	-295342798E+05
61*	-12(737260E+04	-514100645E+05	2.00CGC	95.0	0.	-4088304252+04
SLETOTAL	.21f320973E+05	.206673249E+08	56-85191 -	95.0	-125207376E+05	-307434569E+05
70*	.47 (920 140E+05	.469950131E+08	38.00000	95.0	-332082358E+05	.609757923E+05
. 71*	.9813869872+04	.556004112E+07	18.00000	95.0	.488576652E+04	-147979731E+05
72 *	.34(244147E+C4	-154998295E+08	3.00000	95.0	0 -	-174811226E+05
SUBTOTAL	-653383254E+05	.680578a37E+08	25.05996	95.0	-4 8 3 4 3 9 0 17 E + 0 5	.323327490E+05
TOTAL	-34(865482E+06	.842690569E+09	70-93821	95.0	-282503580E+06	-398826934E+06

Table C-7.--CPUE, population, and biomass estimates for Alaska plaice.

STANDARD TRANK FIRTH = 16.54000000 METERS

STRATUM	AFEA SQ. MI.	SAMPLE S	TOTAL HAULS	HAULS WITH Catch	HAULS WITH NUMS.	HAULS WITH L-F	C P U E K G/HA	VARIANCE CPUE KG/HA	CPUE NO/HA	VARIANCE CPUE NOZHA
1C±	22,950。	.256968492E+07	57	47	47	11	9.19698	.36040CE *C1	16.28256	u8 52701E > 01
Suetotal	22,950。	.256968492E+07	57	47	47	11	9.19698	.360400E *O1	16.28256	a652701E + 01
20*	16,030.	. 179494262E+07	3 e	14	14	c	3.23018	.248118E + C1	6.01930	.127615E+02
21°	1,720.	. 19253532EE+06	6	5	5	2	1.19547	.179904E + C0	1.48093	.387526E+00
Subtotal	17,750.	. 198747795E+07	44	19	19	2	3.03307	.266103E + O1	5.57965	.13149CE+02
30±	1,271.	• 1425 4645 0E+07	23	3	3	0	0.04983	.776172E -03	0.04674	.674298E-03
32¢		• 142350928E+06	6	5	5	C	0.52185	.794337E -01	0.53723	.106709E+00
Sietūtal		• 156781543E+07	34	3	8	C	0.09265	.802098E -01	0.09128	.107333E+00
40*	21,612.	. 2419 88 98 0E + 07	56	56	56	53	46.01885	•15327 8E +03	92.52100	.50991EE+03
41*	3,115.	. 3487 7153 6E + 06	13	13	13	13	33.80124	•50187 CE +02	57.85387	.10963CE+03
42*	2,009.	. 2249 5000 2£ + 06	5	5	5	5	10.98622	•511797E +01	15.62065	.67827EE+01
Subtotal	26,736.	. 2593 6513 9E + 07	74	74	74	71	41.96255	•20858 3E +03	82.70265	.628330E+03
5C°	4,345。	.186525370E+06	11	10	10	7	12.09047	-931036E	10.81338	-582815E+02
52°	2,317。	.259397449£+06	9	8	8	7	20.20389		30.35879	-123021E+03
Subtotal	6,662。	.745922819E+06	20	13	18	14	14.91194		17.61069	-181302E+03
€0¢	22,793。	.255218538E+07	56	56	56	37	20.77885	.679196E+01	41.14656	.248449E+02
€1¢	975。	.109212363E+06	3	3	3	0	2.25061	.283997E+00	3.33295	.14143EE+01
SUBTOTAL	23,769。	.266139775E+07	59	59	59	37	20.01853	.707595E+01	39.61537	.262598E+02
70#	16,921.	.189466687E+07	39	21	21	7	5.77149	.42615 &E • 01	5.96066	.538900E+01
71#	4,231.	.473731236E+06	19	15	15	8	8.66984	.79654 4E • 01	14.11342	.254835E+02
72#	2,446.	.273903618E+06	9	9	9	1	8.80546	.17971 6E • 02	9.45676	.172014E+02
Sub 10tal	23,598.	.264230172E+07	67	45	45	16	6.60563	.301986E • 02	7.76475	.480736E+02
TCTAL	135,466.	.15168252CE+08	35 5	270	270	151	15.84337	. 393625E +03	28.99442	_905745E+03

Table C-7.--CPUE, population, and biomass estimates for Alaska plaice (cont'd).

STEATEM	MEAN KT KG	FOPULATION	VARIÁNCE PCPULATION	METHOD USED	EFF. DEG. FREEDOM	C CNFICENCI PERCENT	E LIMITS - POPULATI LOWER	CON UPPER
10* Suetgtal		•128167874E+09 •128167874E+09	•528335299E+15 •529335299E+15	1	56.00C0C 56.00C0O	95.0 95.0	.8207610E8E+08	•174259639E+09 •174259639E+09
20± 21± Slutotal	0.807241	-330953236E+08 -873414825E+06 -335692386E+08	.385794707E+15 .134795247E+12 .385929503E+15	1	37.00000 5.00000 37.16258	95.0 95.0 95.0	0 - 0 • 0 •	.725153560E+08 .189260857E+07 .737957266E+03
3C* 32* SUBTOTAL	0.971381	-204093352E+06 -234258949E+06 -438352301E+06	.128563460E+11 .202895725E+11 .331459185E+11	1	27.00000 5.00000 6.42804	95.0 95.0 95.0	0. 0. 0.	-436761071E+06 -600475969E+05 -833853624E+06
40* 41* 42* Suetotal	0-564252 0-703314	-505823586E+09 -616087548E+08 -107656140E+08 -758397555E+09	.280184607E+17 .125130482E+15 .417167442E+13 .281477629E+17	1 1 1	55.00000 12.00000 4.00000 57.22441	95.0 95.0 95.0 95.0	.350170487E+09 .374340824E+08 .5C9572357E+07 .422323569E+09	.102147668E+10 .861834273E+08 .164355044E+08 .105447234E+10
50* 52* Suetotal	0.665504	.161162270E+08 .241227431E+09 .402389701E+08	.1254476942+15 .776717093E+14 .207119404E+15	1 1	10-0000 -8-00000 17-96681	95.0 95.0 95.0	0. .379560659E+07 .987260225E+07	.414653154E+08 .444458796E+08 .706053380E+08
EC± E1* Suetotal	0.587174	.321678640E+09 .126227505E+07 .322960915E+09	.151850236E+16 .158346721E+12 .151866071E+16	1	55.00000 2.00000 55.20857	95.0 95.0 95.0	.243497210E+09 0. .244816328E+09	.395360070E+09 .299455932E+07 .401105503E+09
70* 71* 72* Suetotal	0.614298 0.931128	.345942198E+08 .2048050842+08 .793444990E+07 .63(C91781E+08	.181520876E+15 .536630873E+14 .121090926E+14 .247293057E+15	1 1 1	36.00000 18.00000 8.00000 62.81509	95.0 95.0 95.0 95.0	.728047104E+07 .502368358E+07 0. .315685533E+08	.615079686E+08 .355373332E+08 .159588967E+08 .944498029E+08
TGTAL	0.C00540	-134718248E+10	.310351340E+17		74.78822	95.0	.995668771E+09	•165869619E+1)

16

Table C-7.--CPUE, population, and biomass estimates for Alaska plaice (cont'd).

STRATUM	BIDMASS MT	VARIANCE ĢIŪMASS		EFF. CEG. FREEDOM	CCNFIDENCE PERCENT	LIPITS - BICMASS LCWER	UPPER
10* Suetotal	•7 23938117E+05 •7 23938117E+05	.223304453E+09		56.00000 56.00000	95.0 95.0	.424286092E+05	•102359014E+06 •102359014E+06
20*	-177604481E+05	.750088465E+08		37 . 00000	95.0	-1 64292069E+03	.353366041E+05
21*	-7 05056E45E+03	.625769727E+05		5.00000	95.0	.619109734E+02	-1 348 20 23 2E+04
SUETOTAL	.184655C49E+05	.75C714235E+06	*	37.38430	95.0	-900213881E+03	.360307956E+05
30€	•217581958E+03	.147937064E+05		27.00000	95.0	0.	.467694221E+03
12*	•227554630E+03	.151035214E+05		5.00000	95.0	0	•543521236£+03
SUETOTAL	-445136589E+03	.299022278E+05	-	7.26075	95.0	.361746241E+02	-854098552E+03
4 C ±	•341120508E+06	.E42219041E+10		55.00CCC	95.0	-157093717E+06	.525147293E+05
41*	.3611189258+05	•572830324E+08		12.00000	95.0	.196200101E+05	-526037750E+05
42*	.7571607595+04	.243095538E+07	- 1	4.00000	95.0	.324340126E+04	-118998139E+05
SUETOTAL	.384804003E+06	. £48190439E+10	1 .	58.19849	95.0	.200416093E+06	-5651919222+06
					· .		
50≄	-1 e(187773E+05	-206790365E+09	: 14	10-00000	95.0	0.	-500578794E+05
52∗	-16C537719E+05	-305093147E+08		8.00000	95.0	.299CE3836E+04	-291169054E+05
SUETOTAL	-34C725492E+05	-237299679E+09		13.38749	95.0	-798754955E+03	.673463434E+05
	•		14				
€0≠	-162446420E+06	-415118774E+09	1.5	55.0000C	95.0	.121569133E+06	-203323706E+05
€1±	.752918932E+03	.317841173E+05	٠.	2.00000	95.0	0_	-152006210E+04
SUBTOTAL	-163199338E+06	-415150558E+09	***	55.15423	95.0	-122341881E+06	.204056796E+06
70.	7744674475 05	4475455445 44	٠	70.0000			F772510005-05
70± 71=	.334963197E+05	.143545516E+09		36.50000	95.0	.920714070E+04	.577854988E+05
72 ±	-125611321E+C5	-167736290E+08		18.00000	95-0	.397 €35608E+04	-211859081E+05 -155901274E+05
SUE TOTAL	•73 6799 01 4E+04 •53 465 4 42 CE+05	.126513090E+08 .172970454E+09		8.00C00 55.08794	95.0 95.0	.270527484E+05	•155901274E*05
SELIGIAL	•33 •634 42 VE •U3	+11271U434ETUY		JJ. UQ/Y4	7. • U	1210 321 4646403	•1 3c3 at 333 E 403
TOTAL	-726845790E+06	.960573086E+10		85.71534	95.0	-531644870E+06	.922046711E+06

Table C-8 .--CPUE, population, and biomass estimates for Greenland turbot.

STANDARD TRANL FIDTH = 16.54000000 PETERS

STRATUM	AFEA SQ. HI.	SAMPLES	TCTAL FAULS	HAULS WITH Catch	HAULS WITH NUMS-	HAULS WITH L-F	C F UE K G / H A	Y AR IANCE C PUE K G/HA	CPUE No/HA	VARIANCE CPUE NO/HA
10=	22,950.	-256968492E+07	57	0	0	o	0.00000	0.	0.00000	0.
SUBTOTAL	22,950.	• 2569 6849 2E+07	57	0	0	C	0.00000	0.	C.00000	3 .
20*	16,030.	-179494262E+07	3 &	2	2	c	0.16216	-219170E -01	0.03475	.836297£-03
21•	1,720.	- 1925 35 32 8E+06	6	0	0	Ċ	0.00000	0.	0.00000	J •
SUETOTAL	17,750.	•198747795E+07	44	2	2	Č	0.14645	-2 1917 0E -01	0.03138	-636297E-03
30+	12,731.	- 142546450E+07	28	24	24	18	2.93924	-215990E+00	3.99338	-444033E+00
32∗	1,271.	-142350928E+06	6	4	4	3	0.66956	-558348E -01	0.82903	-98059CE-01
SUETOTAL	14,002.	-156781543E+07	34	28	28	21	2.73316	-271 825E+00	3.70607	-542092E+00
4 C±	21,612.	-24198893CE+07	5 6	2	2	1	0-02018	-223215E-03	0.02652	-350491E-03
41*	3,115.	-348771586E+06	13	1	1	0	0.00963	-926562E-04	0.01768	-312740E-03
42*	2,009.	- 224990002E+06	5	0	0	0	0.00000	0.	0.00000	0.
SUBTOTAL	26,736.	.2993E5139E+07	74	3	3	1	0.01743	•315875E-G3	0.02350	•663231E-03
50≄	4,345.	-486525370E+06	11	1	1	1	0.04428	-196084E-02	0.07810	-609950E-02
52±	2,317.	-259397449E+06	9	0	0	0	0.00000	0 -	0.00000	ð -
SUETUTAL	6,862.	-74592281 9E+06	20	1	1	1	0.02888	.196084E-02	0.05094	-609950E-02
€0*	22,793.	-255218538E+07	56	1	1	0	C.00149	-222191E -05	0.00411	-16874CE-04
€1*	975.	-109212363E+06	3	0	0	C	0.00000	0.	0.00000	0.
SUETOTAL	23,769.	.266139775E+07	59	1	1	. 0	0.00143	-222191E -05	0.00394	-168740E-04
7 C*	16,921-	-189466687E+07	39	17	17	1	0-47643	- 155181E -O1	0.46506	-136421E-01
71=	4,231.	-473731238E+06	19	1	1	1	0.04157	-172769E-02	0.05727	.32801 EE-02
72*	2,446.	- 27 39 0361 8E+0 6	9	7	7	2	0-97740	-202522E+00	1-29304	-282017E+00
SUB TOTAL	23,598.	• 264230172E+07	67	25	25	4	0.45039	.219768E+CO	0-47778	-298935E+00
TOTAL	135,466.	- 151682520E+08	355	60	60	27	0.38526	.515789E+00	0.47824	-843647E+00

Table C-8. -- CPUE, population, and biomass estimates for Greenland turbot (cont'd).

STRATUR	MEAN HT KG	FCPULATION	VARIANCE PCPULATION	METHOD USED	EFF. CEG. F9EEDOM	CONFIDENCE PERCENT	LIMITS - PCPULAT LOWER	ION UPPER
1 C* Subtotal		0.	0.	. 1	C-00C00 O-00C00		0 - 0 -	0.
2C+ 21+ Subtolar	0.00000	-191043924E+06 0- -191043924E+06	.252821996E+11 0. .252821896E+11	1	37-00000 0-00000 37-00000	95.0	0. 0.	.51 33 92 20 8E +0 6 0. .51 33 92 20 3E +0 6
30* 32* Suetutal	0.807642	.174370821E+08 .361500863E+06 .177985930E+08	.846605536E+13 .126449425E+11 .846470030E+13	1	27-00000 5-00000 27-54213	95.0 95.0 95.0	.114548445E+03 .1C4398506E+05 .118214130E+08	.234193198E+03 .712561875E+06 .237757530E+08
40± 41± 42± Subtotal	0.544309	-196604186E+06 -188933687E+05 0- -219497954E+06	.192584164E+11 .356559380E+09 0- .196153758E+11	1 1 1	55-00000 12-00000 0-00000 62-31276	95.0 95.0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	.4748821452+06 .600620190E+05 0. .495513990E+06
50± 52* Subtutal	0.000000	-116393629E+06 0. -116393629E+06	.135474769E+11 0. .135474769E+11	1	10.00000 0.00000 10.00000	95-0 95-0 95-0	0.	.379676018E+06 0. .379676013E+06
EO# E1* Suetotal	0.00000	.321142748E+05 0 .321142749E+05	.103132655E+10 0. .103132665E+10	1	55.00000 0.00000 55.00000	95.0 95.0 95.0	0.	.965114244E+05 0. .965114244E+05
70* -71* 72* Suetutal	0.725745	.26 9911 306E +07 .83 1107 434E +05 .10 E489 102E +07 .3 E67 11 40 3E +07	.459514145E+12 .690739563E+10 .198528598E+12 .664950139E+12	1 1 1	38-00000 18-00000 8-00000 18-14340	95.0 95.0 95.0 95.0	.132485763E+07 0. .574170227E+05 .215366541E+07	.407336849E+07 .257726415E+06 .211236502E+07 .558036425E+07
IOTAL	0.000896	•227207472E+03	•920912681E+13		33-86929	95.0	•1€0431014E+08	•283983930E+08

Table C-8.--CPUE, population, and biomass estimates for Greenland turbot (cont'd).

STRATUM	EIOMASS MT	VARIANCE Biomass	EFF. CEC. FREEDCM	CONFIDEN PERCENT	CE LIMITS - BIGHASS LOWER	UPPER
1G* SUBTOTAL	0 . 0 .	0.	0.00C0C 0.00C00	95.0 95.0	0 - 0 -	0. 0.
20≄	-891611916F+03	-662576241F+06	37.00CCC.	95.0	0.	.254180951E+04
21 ★.	0.	0.	0.00000	95.0	0.	0.
SUBTOTAL	-891611916E+03	.662576241E+06	37.00000	95.0	0.	-254180951E+04
20*	•126341798E+05	.411312372E+07	27.00000	95.0	-867C02324E+04	•169983364E+05
32*	.291963333E+03	.106164352E+05	5-00000	95.0	-270575542E+02	.556869112E+03
SUETOTAL	•131261432E+05	-412374015E+07	27-63196	95.0	-855 E62 2 47E +04	-172956638E+05
40=	•145579911E+03	.122652013E+05	55.00C00	95.0	0.	.371774364E+03
41 *	-1028333102+02	-105757181E+03	12.00000	95.0	0 _	.326922989E+02
42±	0.	0.	0.00000	95.0	0.	0.
SUETUTAL	-159863742E+03	•123709584E+05	58.78989	95.0	0 -	.382546935E+03
5 C±	.655938568E+02	. 435518913E+04	10.00000	95.0	0 •	•213028170E+03
52*	0.	0.	C-00C00	95.0	0 -	0.
SUBTOTAL	-659938568E+02	.435518913E+04	10-00000	95.0	0 -	-213028170E+03
€0•	•11€533530E+02	-135801569E+03	55.00000	95.0	0 -	.350335954E+02
61∗	0.	0.	0.0000	95.0	0 •	0.
SUBTOTAL	•116533930E+02	•135801569E+03	55.00000	95.0	0 •	.35C335954E+02
70•	· •276506502E+04	.522705134E+06	38.00000	95.0	-1 29936058E+04	.423076946E+04
71*	-603172367E+02	.363815904E+04	18.00000	95.0	0.	-1870437515+03
. 72*	-82(061449E+03	.142567858E+06	8.00000	95.0	0 -	-165076460E+04
SUBTOTAL	• 36 45 44 37 1E + 0 4	.668911161E+06	24.00337	95.0	-195736025E+04	•533352717E+04
TOTAL	-17 9007 C98E +05	.547708951E+07	45.56142	95.0	-131832133E+05	-226182033E+05

Table C-9.--CPUE, population, and biomass estimates for arrowtooth and Kamchatka flounder.

STANDARD TRANL FIDTH = 16.54000000 METERS

STRATUM	AFEA SQ. MI.	SAMPLE S	TOTAL FAULS	HAULS WITH Catch	HAULS WITH NUMS•	HAULS WITH L-F	C PUE KG/HA	VARIANCE CPUE KG/HA	CPUE NO/HA	VARIANCE C?UE ND/FA
10+		•2569 E8492E+07	5 7	15	15	a	0.22845	.802012E-02	0.66306	.713478E-01
SUETOTAL	22,950.	-2569E8492E+07	57	15	15	0	0-22845	-802012E -02	0.66306	.713478E-01
20*	16,030.	• 1794 94262E+07	38	37	37	29	19.31581	• 126945E+02	5 7.25003	-11363CE+03
21*	1.720.	-1925 35328E+06	ő	6	6	-6	7.11150	-18010 EE +01	41.05122	_380386E+02
SLETCTAL	17,750.	-1987 47795E+07	44	43	43	35	18-13353	-144956E+02	55.68078	-15166 EE+03
30*	12,731.	-1425 4645 CE+07	28	25	25	16	4-16597	-109032E+01	5.57092	•196831E+01
32∗	1-271-	• 142350	6	1	. 1	C ·	0.13340	■177 96 3E - 01	0.14705	-216243E-01
SUBTOTAL	14,002.	•1567e15432+07	34	25	26	16	3.79933	-110812E+01	5.07846	•198933E+01
40+	21.612.	-241988930E+07	56	0	0	O	0-00000	0.	0-00000	0 -
41*	3,115.	-3487715866+06	13	3	3	0	0.02093	-371338E-03	0.46150	•180435E+00
42*	2,009.	-224990002E+06	5	O	0	0	0.00000	0.	0.00000	O .
SUETCTAL	26,736.	-259365135E+07	74	3	3	C .	0-00244	-371338E-03	0.053/7	-190425E+00
50*	4,345.	.486525370E+06	11	0	0	0	0.00000	0.	0.00000	0.
52*	2,317.	. 259397449E+06	9	0	0	C	0.00000	0.	0-00000	J •
SUBTOTAL	5, \$62.	•74592281 SE+06	20	0	Ü	0	0-00000	0.	0-00000	0 -
€0*	22,793.	-255218538E+07	56	5	5	ì	0.14750	•1'32995E-01	0.67232	-196267E+00
€1*	975.	• 1092123632+06	3	3	3	2	2-17762	.154197E+01	14.56827	-785386E+02
SUBTOTAL	23,769.	-266139775E+07	59	ô	3	3	0.23080	•195527E+01	1.24255	.787348E+02
70*	16,921.	.1894666872+07	35	35	35	21	7.81347	-244001E+01	24.61 355	.228845E+02
71*	4,231.	-473731238E+06	19	19	19	13	3.42075	-538441E+00	21.33411	•351422E+02
72*	2,446.	-2739 C3618E+U6	9	2	2	0	0.25010	-630635E-C1	0.28130	-599497£-01
SUETOTAL	23,599.	- 264230172E+07	67	56	56	3.4	6-24271	-3C4152E+01	21.50 323	-58087CE+02
TETAL	135,466.	•151682520E+08	355	151	151	8.8	3.93593	-206089E +02	11.90752	•290732E+03

2

Table C-9 .--CPUE, population, and biomass estimates for arrowtooth and Kamchatka flounder (cont'd).

STRATUM	MEAN HT KG	FOPULATION	VARIANCE POPULATION	METHOD USED	EFF. DEG. FREEDOM	CONFIDENCE PERCENT	LIMITS - POPULAT LCWER	ION UPPER
10. Subtotal		•521929137E+07	-442072409E+13	1	56.00000 56.00000	95.0 95.0	-100535704E+07 -100535704E+07	.943322569E+07
20* 21* Suetutal	0.173235	.314776842E+09 .242110119E+08 .338987854E+09	.343515173E+16 .132311d32E+14 .344838297E+16	1	37.00000 5.00000 38.65695	95.0 95.0 95.0	•195956449E+09 •141133971E+08 •220662168E+09	.433597236E+09 .343086268E+08 .457913540E+09
30± 32± Suetotal	0.907132	•243253903E+08 •641220395E+05 •243895123E+08	.375283371E+14 .411163595E+10 .375324487E+14	1	27.00000 5.00000 27.02758	95.0 95.0 95.0	•117547610E+08 0• •1181E1945E+08	.368960195E+08 .228979803E+06 .369603301E+08
40± 41± 42± Suetutal	0.045359 0.000000	0. -492047E87E+06 0. -492047E87E+06	0. .206004322E+12 0. .2060C4322E+12	1 1 1	C.00C00 12.00C00 0.00C00	95.0 95.0	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	0. -1 402 04 56 5E + 07 0. -1 482 04 56 5E + 07
50* 52* Subtotal	0.00000	0 . 0 . 0 .	0. 0.	1	0.00000	95.0	0 . 0 . 0 .	0 - 0 - 0 -
€0± €1± SUBTOTAL	0-149477	.525607628E+07 .487367307E+C7 .101297494C+03	.119956746E+14 .E78981117E+13 .207854859E+14	1 1	55.00C0C 2.00C00 2.30268	95.0	0 . 0 . 0 .	-122012140E+03 -425439336E+08 -297476005E+08
7C* 71* 72* SUETOTAL	.0.160342 0.917527	-142651085E+09 -305587209E+08 -236016723E+06 -174045823E+09	.770844655E+15 .740023865E+14 .422022574E+11 .844839243E+15	1 1 1	38.00000 18.00000 8.00000 50.34620	95.0 95.0 95.0 95.0	.866232517E+08 .128075219E+03 0. .1156C6662E+09	-199078919E+09 -491099199E+08 -709742639E+05 -232484983E+09
TCTAL	0-000331	•553265278E+09	.435621687E+16		61.53774	95.0	.421283992E+09	•685246563E+09

Table C-9 .-- CPUE, population, and biomass estimates for arrow-tooth and Kamchatka flounder (cont'd).

STRATUM	BIOMASS MT	VARIANCE BICFASS	EFF. DEG. FREEDOM	CONFIDENC PERCENT	E LIPITS - BIOMASS LOWER	UPPER
10*	1740254755.04	400 0207175.00	E4 00000	95.0	.384690581E+03	.321181813E+04
SUBTOTAL	-17 \$825 435E + 04 -17 \$825 435E + 04	496928337E+06496928337E+06	56.00000 56.00000	95.0	.384690581E+03	.321181813E+04
						4.53496925.466
` 20∗	-1 C £ 2 0 3 8 0 9 E + 0 6	.383765569E+09	37-00000	95.0	.664 889 262E+05	.145918692E+06
21*	-415419062E+04	.626471927E+06	5.00000	95.0	.215924465E+04	.622913660E+04
SUETOTAL	-116398000E+06	.384396040E+09	37.73916	95.0	-706507144E+05	.150145285E+06
30∗ .	-181906851E+05	-207884323E+08	27.00000	95.0	.883472795E+04	.275466423E+05
32*	•5 € 17 0 3 4 1 1 E + 0 2	.338378853E+04	5.00000	95.0	0.	.207726288E+03
SUETOTAL	-182488555E+05	-207918161E+08	27.04095	95.0	-889213687E+04	.276055741E+05
40≠	0.	0.	0.00000	95.0	0.	C.
41*	-22364192CE+C2	.423842894E+93	12.00000	95.0	0.	.672242348E+02
42*	0-	0.	(.00000	95.0	0.	0.
SUBTOTAL	-223641920E+02	.423842894E+03	12.00000	95.0	0.	.672242348E+02
50≄	•	•	4 4444	0E 0	•	0.
50# 52#	0.	0 -	C.00C00	95.0	0-	0.
SUBTUTAL	0.	0.	0.00000	95.0	0.	0.
SUBTUIAL	0 -	0.	C-00C0C	95.0	0 -	u.
€0*	-115309749E+04	-812852296E+06	55.00000	95.0	0.	-296099724E+04
€1*	•72E502062E+03	-217339556E+06	2.00000	95.0	0.	-665199996E+04
SUE TOTAL	-1 & £ 15 \$ \$55E + 0 4	.103015185E+07	2.67752	95.0	0.	-624907429E+04
70±	•453474740E+05	. £21954266E+08	38.00000	95.0	.269874497E+05	.637074983E+05
7.1*	49639795CE+04	.113384903E+07	18.00000	95.0	.272678534E+04	.72C117367E+04
72*	•216551655E+03	.443945204E+05	8.00000	95.0	0.	.702426026E+03
SUBTOTAL	-505280051E+05	.833666701E+08	40.29648	95.0	.320751938E+05	.589803165E+05
TOTAL	-182d77079E+06	-450C82071E+09	60.23644	95.0	-138601484E+06	•227152673E+06

Table C-10.--CPUE, population, and biomass estimates for Pacific halibut.

STANDARD TRANL FIDTH = 16.54000000 METERS

NUTARTZ	AREA 5Q. MI.	SAMPLES	TGTAL HAULS	HAULS WITH CATCH	HAULS WITH NUMS.	HAULS WITH L-F	CPUE KG/HA	VARIANCE CPUE KG/HA	CPUE NO/HA	VARIANCE CPUE NO/HA
16*	23,950.	. 256968492E+07	57	52	52	.52	4.05478	.50223 EE +00	1.72314	.896714E-01
SUBTOTAL	22,950-	-256968492E+07	57	52	52	52	4.05478	-50223 &E +00	1.72314	-896714E-01
26±	16,030.	-179494262E+07	. 38	29	29	28	3.73234	.855969E+00	1.03695	-693189E-01
21*		• 1925 3532 ££+06	6	3	3	3	0.37200	.346306E-01	0. 22 356	-192241E-01
SUBTOTAL	17,750.	• 198747795E+07	44	32	32°	31	3.40681	-890600E+CO	0.95816	.885430E-01
30018181	1777304	*1701411732+01	77	32	36	31	3.40001	•0700001	0.,5110	*869436E 01
30*	12,731.	-142546450E+07	28	5	5	5	0.38562	.698048E-01	0.06218	_864359E=03
32∗	1,271.	-14235092 EE+06	6	6	6	6	4.09443	-860326E +01	0.53982	-397779E-01
SUETOTAL	14,002.	-156781543E+07	34	11	11	11	0.72145	.867306E+01	0.10555	-405423E-01
40*	21,612.	.241986980E+07		24	2.4	2.	A (A775	.264167E-01	0.26953	.503065E-02
41*	3,115.	.148771536E+06	56 13	24 5	24 5	24 5	0.60372 0.37501	.561718E-01	0.26953	-212038E-02
42*	2,009	• 2249 9000 2E+06	5	2	2	ž	0.05291	.10688CE-02	0.08953	.301002E-02
SUETATAL	26,736.	• 259365139E+07	74	31	31	. 31		.836573E-01	0.23 820	•102111E-01
JUCIUTAL	20)/36+	• 5333 6313 35 +0 7	/4	31	31	. 31	0-53568	-2357/35-01	0.23 620	•1021112-01
50*	4,345.	.486525370E+06	11	0	0	·c	0.0000	0.	0-00000	J.
52±	2,317.	. 259397449E+06	9	5	5	5	0.10587	-138026E-02	0.17138	-480155E-02
SUBTOTAL	6,662 -	.745922819E+06	20	5	5	5	0.03682	.138026E-02	0.05960	-480155E-02
€0*	22,793.	.255218538E+07	5 .	• •		19	0.50948	-86237EE -01	0.36264	11/5065-01
61*	975.	_	56	19	19					-114586E-01
SUBTUTAL		-109212363E+06	3	. 1 20	1	1	0.40326	-162619E+00	0.21337	.455265E-01
SUBTUTAL	23,769.	.266139775E+07	59	20	20	20	0.88671	-248856E +00	0.35651	•569851E ~01
70+	16,921.	.189466687E+07	39	28	28	27	2.01160	-243722E+00	0.61606	.17781CE-01
71*	4,231.	. 47 37 31 23 8E+06	19	13	13	13	6.26302	.157862E+02	3-18776	-269999E+01
72*	2,446.	.273903618E+06	ç	6	6	6	1-04748	-199933E+QO	0-63489	.535117E-01
SUBTOTAL	23,598.	-264230172E+07	67	47	47	4€	2.57388	-162299E+02	1.07908	.277 129E+01
TETAL	135,465.	.151682520E+08	355	199	198	196	1-93714	-266296E+02	0-72835	-306214E+01

Table C-10.--CPUE, population, and biomass estimates for Pacific halibut (cont'd).

STRATUR	MEAN WT KG	FCPULATION	VARIANCE PUPULATION	METHOD USED	EFF. CEG. FREEDCM	C CNFIDENCE PERCENT	LUMITS - PCPULAT LOWER	ION Upper
1C* SUETUTAL	2.353133 2.353133	-135636721E+08 -135636721E+08	.555605906E+13	1	56-00C0C 56-00C0O	95.0 95.0	.863703840E+07	-182903059E+08 -182903059E+08
20* 21* Subtotal		.57(146993E+07 .131850197E+06 .58!332012E+07	.209558652E+13 .668683498E+10 .210227335E+13	1	37-00000 5-00000 38-39455	95.0 95.0 95.0	.276672191E+07 0. .289693841E+07	.863621794E+07 .342088758E+06 .876970134E+07
3C+ 32± Subtotal	7-566258	-271529057E+06 -235389379E+06 -506918436E+06	.164901108E+11 .756337392E+10 .240434647E+11	1	27-00000 5-00000 10-34168	95.0 95.0 95.0	-810379531E+04 -117955242E+05 -161445610E+06	.534954319E+06 .45E983233E+06 .852391262E+06
40* 41* 42* Subjotal	3.213953 0.550525	-199795606E+07 -124658158E+06 -617065425E+05 -218432076E+07	-279166726E+12 -242019006E+10 -142971239E+10 -283016629E+12	1 1 1	55.00000 12.00000 4.00000 62.67479	95.0 95.0 95.0 95.0	.938457543E+06 .163790222E+05 0. .112068927E+07	.305745457E+07 .232937293E+06 .166671371E+06 .324795224E+07
50± 52± Subjutal	0.617707	0. .136180100E+06 .136180100E+06	0. .303156012E+10 .303156012E+10	1	C.00C0C 8.00C0C 8.00C0O	95.0 195.0 95.0	0. .921265030E+04 .921265030E+04	0- -263147549E+06 -263147549E+06
€0• 61• Suetotal	1.883952	.2 E 35 07 0 85E +07 .7 1 3 6 0 6 2 9 7 E + 0 5 .29 (6 4 5 1 4 8 E + 0 7	.700340056E+12 .509519430E+10 .705435251E+12	1 1	55.00000 2.00000 47.07640	95.0 95.0 95.0	-115607217E+07 0. -121518296E+07	•451406954E+07 •378531479E+06 •459772000E+07
7 0* 7 1* 7 2* Sub tot al	1.964713 1.649868	.357545671E+07 .462587070E+07 .532683767E+06 .873401117E+07	.5989298865+12 .568564316E+13 .376701379E+11 .632224313E+13	1 1 1	38.00000 18.00000 8.00000 20.39340	95.0 95.0 95.0 95.0	-200 6517 88E+07 0. .851 169214E+05 .348 855791E+07	.514439554E+07 .965707349E+07 .98C250613E+06 .139790644E+03
TOTAL	0.002658	•338643742E+08	.149961025E+14		46.63768	95.0	-260629885E+08	.41666760DE+08

Table C-10.--CPUE, population, and biomass estimates for Pacific halibut (cont'd).

		VARIANCE	EFF. DEG.	CONFIDENC	SZAKDIB - STITLE B	•
STRATUM	BIOMASS HT	BICHASS	FREEDOM	PERCENT	LOWER	UP PER
10•	-315171249E+05	.311187392E+08	56.00000	95.0	-207310036E+05	.431032461E+05
SUBTOTAL	•315171249E+05	-311187392E+08	56,00000	95.0	-2C7310036E+05	-431032461E+05
20*	-205214538E+05	.258768941E+08	37.00000	95.0	.101980306E+05	.306445770E+05
21€	-215394991E+03	-120457660E+05	5.00000	95.0	0.	-501570430E+03
SLETOTAL	-207408488E+C5	.258889399E+08	37-21605	95.0	-104257081E+05	-310559894E+05
30≠	•16E379371E+04	•133091510E+07	27.00000	95.0	0.	.405570682E+04
32*	-178101676E+C4	.1635E2360E+07	5.00000	95.0	0.	.533150183E+04
SUBTOTAL	.3464810472+04	-256674170E+07	6.35683	95.0	0.	-767958005E+04
4 O =	.447514435E+04	•145151990E+07	55.00000	95.0	-205923840E+04	.689105029E+04
41±	.40C645416E+03	.64114C773E+05	12.00000	95.0	0 -	.957955294E+03
42*	•364639083E+02	.507663643E+03	4.00000	95.0	0.	.99 C1 10 535E +02
SUETCTAL	-451225367E+04	-151614164E+07	67.26002	95.0	-245249268E+04	.737201467E+04
50 *	0.	0.	C-00C00	95.0	0 -	
52*	-941193900F+02	-871454849F+03	8.00000	95.0	-160453151E+02	-152193465E+03
SUETOTAL	.341193900E+02	. 671454847E+93	8.00000	95.0	-160453151E+02	•152193465E+03
6 0 • .	.71102325EE+04	•527078222E+07	55.00000	95.0	-250654270E+04	-1171 39225E+05
€1*	-134906669E+03	-181558094E+05	2.00000	95.0	0.	-715410063E+03
SUETOTAL	-724513925E+04	.528899203E+07	55.92881	95.0	-263350803E+04	-118567705E+05
7.0*	•116748165E+05	.820945111E+07	38.00C0C	95.0	.5 E6 E16820E+04	•174834643E+05
71•	.9C 8850 892E+04	.332425640E+08	18.00000	95.0	0.	-212021112E+05
72•	-8788577832+03	.140744768E+06	6.00C0C	95.0	.137396143E+02	-174397595E+04
SUBTOTAL	-21€421€32E+05	-415927598E+08	22.79332	95.0	.826644925E+04	.350179171E+05
IOTAL	-90C064796E+05	.108373176E+09	65.44079	95.0	.692C33424E+05	-11C8O9617E+06

APPENDIX D

Population Estimates by Sex and Size Groups for Principal Fish Species

Appendix D presents estimates of the numbers of individuals within the overall survey area by sex and size group for principal species of fish.

List of Tables

Table		Page
D-1.	Population estimates by sex and size group for walleye pollock	175
D-2.	Population estimates by sex and size group for Pacific cod	177
D-3.	Population estimates by sex and size group for sablefish	180
D-4.	Population estimates by sex and size group for yellowfin sole	181
D-5.	Population estimates by sex and size group for rock sole	182
D-6.	Population estimates by sex and size group for flathead sole and Bering flounder	184
D-7.	Population estimates by sex and size group for Alaska plaice	185
D-8.	Population estimates by sex and size group for Greenland turbot	186
D-9.	Population estimates by sex and size group for arrowtooth flounder and Kamchatka flounder	188
D-10.	Population estimates by sex and size group for Pacific halibut	190

THIS PAGE INTENTIONALLY LEFT BLANK

Table D-1. --Population estimates by sex and size group for walleye pollock.

1 EXCTUANAS	ALL MALCO	5511156	liver ven			CUMULATIVE
LENGTH(MM) 80.0	*** NALES ***	** FEMALES **	** UNSEXED **	*** TOTAL ***	PREPORTION	PRUPORTION
90.0	1.	0.	-226323647E+06	-226323647E+06	0.00003	0.00003
	0.	0.	-155241255E+07	-155241259E+07	0.00020	0.00023
100.0	.27d3011 67E+06	-923966096E+05	-172836975E+08	•176543953E+08	0.00232	0.00256
110.0	-173463587E+07	-654787356E+76	-53929211CE+0E	.563196342E+08	0.00742	0.03598
120.C	-579907071E+07	-3433052G0E+97	•54321320CE+0#	•635534727E+08	0.00837	0-01834
130.0	-870561517E+07	- 440466797E +07	.513319584E+08	-64442241EE+08	0.00849	0.02683
140.0	.768264304E+07	-368955281E+07	-412254360E+0E	.525976319E+08	C.00693	0.03376
150.0	.59589548fE+07	•5824853C8E+37	.344579751E+0E	-46241793CE+08	C.00609	0.03985
160.0	.74723631EE+07	-482538301E+07	-337022023C+08	-459999484E+08	0-00606	0.04590
170.0	.77109466(E+07	.595650225E+07	.234695366E+OE	•371399854E+08	0.00469	0.05079
1 6 O . C	.695821025E+07	-657623424E+07	.158120833E+08	-293465278E+08	0.00386	0.05466
150.0	-664632362E+07	-566438196E+J7	.118933685E+0e	-242040741E+08	0.00319	0.05785
200.0	.581860155E+07	-677224161E+07	•520288822E+ 07	•177937314E+08	0.00234	0.05019
210.0	.63371368fE+07	-651111592E+07	. 386461914E+07	-167626719E+0E	0.00221	0.06243
220.C	.9677732C2E+07	-921903113E+07	•537005363E+07	.232668668E+08	0.00306	0.06546
0.053	.687642135E+07	. 845397631E+07	.186686251E+07	-171972602E+08	0.00226	0.03772
240.0	•751531571E+07	-1194781025+08	•914347979E+Of	-202774738E+08	0.00262	0.07039
250.0	.152304655E+08	-107C23776E+06	-237831375E+06	.261706744E+C8	0.00345	0.07384
260.0	-11512844CE+08	-902147401E+07	-237831375E+06	-207721494E+0E	0.00274	0.07658
270.0	.123660165E+08	•993273883E+07	0.	•222987558E+08	0.00294	0.07551
280.0	-119833941E+08	-108898775E+08	0 =	.228732718E+08	0-00331	0.03252
250.0	-86615914CE+07	.106221981E+08	0 •	.192837895E+08	0.00254	0.08506
3CO.O	.37077791 EE+07	-890067771E+07	0.	-176094569E+08	C.00232	0.08738
310.0	-115264535E+08	.664438856£+07	C •	-181708425E+09	0.00239	0.08578
320.0	-130291403E+08	-120108492E+08	0.	-250399896E+08	0.00330	0.09307
330-0	.291261081E+08	-188746397E+08	0 =	.4BC00747 <i>E</i> E+08.	C.00632	0.09939
340.C	-5171502756+08	-420231274E+08	0.	•937381549E+0E	0.01234	0.11174
350.0	.727758063E+08	.673304935 £+08	9.	-140106300E+09	0.01845	0.13019
360.0	-141097257E+09	.879089170E+08	0.	-229006174E+09	0.03016	0.16034
370.0	-15685464(E+09	-132322332E+09	o .	-289186972E+09	0.03808	0.19842
380.0	•19258533 f£+0 \$.150306265E+99	0 •	•343295626E+09	0-04521	0.24363
390.0	-196929012E+09	-141978532E+09	0.	.338907543E+09	0.04463	0.28826
400-0	-190910663E+09	.165316832E+09	n .	•356227545E+09	C.04691	0.33517
410-0	-202658352E+05	-143440661E+75	0.	-346099012E+05	G.04558	0.38074
420.0	-19311609CE+09	-16569873 <i>8</i> E+09	0.	.35901482 EE+09	0.04728	0.42 802
430.0	.231451417E+09	-154834915E+09	0 -	-386286332E+09	0.05087	0.47889
440.C	-265361447E+U9	.198165437E+09	o •	.463526384E+05	0.06104	0.53993
450.0	•268838579E+09	-210262273E+09	0.	-479100851E+09	0.06309	0-60301
460.0	.27242677 68+09	-2439€46671+09	0 -	•516391445E+09	0.06800	0.67101
470.0	-2150593C5E+05	-243734388E+09	0.	.456793697E+09	0.06042	0.73143
480.0	.18211/934E+05	.242110134E+95	0.	-424228068E+09	0.05586	0.78729
490.0	•140336591E+09	.216780451E+09	0 -	.357117072€+09	0.04703	0.33432
500.0	-10408946 E+09	-195294821E+C9	e •	-299384286E+09	0.03942	0.87374
510.0	.927660735£+08	-135557673E+09	0.	+228323746E+09	0.03007	0.90381

Table D-1.--Population estimates by sex and size group for walleye pollock (cont'd).

LENGTH (MH)	*** HALES ***	** FEMALES **	** UNSEXED **	*** TOTAL ***	FRCPORTION	CUMULATIVE PROPORTION
520.C	•5222455 5(E+ 08	.128682279E+09	o.	-180907238E+09	C-02392	0.92763
530.0	-416453623E+08	.784854383E+08	0.	-120130801E+09	0.01582	0.94345
540.0	-298030987E+0e	-676250629E+08	0.	.974291616E+0E	0.01283	0.95628
550.0	-163511223E+0E	.435002368E+08	e.	-648513591E+08	C-00854	0.96482
560.0	•145839695E+08	.3896500286+08	0.*	.534689723E+08	0.00704	0-97186
570.0	.108195934E+08	.316902618E+08	. 0.	.425098552E+08	0.00560	0.97745
580.0	.910656261E+07	•161346174E+08	o •	-252411802E+08	0.00332	0.98078
590.0	.791173535E+07	.164504920E+08	0.	-243622174E+08	0.00321	0.98399
6 C O • C	•555296362E+07	.135730635E+08	0.	.201260321E+08	0.00265	0.98664
£10.0	•523555999E+07	-122207678E+08	0.	-174563278E+08	C.00230	0-98854
620.C	-334344981E+07	-897160629E+07	0.	-123150561E+08	0.00162	0.29056
630.0	.38662834CE+07	-819979086E+07	0 -	-120660743E+08	0.00159	0.99215
640.0	.343497328E+07	-658206163E+07	0.	-100170349E+08	0.00132	0.99347
650.0	369289268E+07	.649185266E+07	0.	-101847853E+08	0.00134	0.99491
660.G	-2098816G5E+07	.5479651708+07	0 •	-75784b774E+07	0.00100	0.99581
670.0	•164530827E+07	.457266181E+07	0.	.621797007E+07	0.00082	0.99663
680.0	-1469352ECL+07	.442446C7CE+07	o.	-589381350E+07	0.00078	0.99740
650.0	.738278444E+06	.346542485E+07	0 -	.420370329E+07	0.00055	0.99796
700.0	-198807645E+07	.482075543E+07	0.	-680833188E+07	0.00090	0.99 685
710.0	-G2021519(E+05	.2748 6677 0E+07	0.	-281C68922E+07	0.00037	0.99523
720.C	.16129653 <i>EE</i> +06	-114307420E+07	0.	-130436274E+07	0.00017	0.99543
730.C	. •577311357E+05	-156690019E+07	0.	-165463132E+07	C. 00022	0.99961
740.C	.3079005&EL+05	-941815177E+06	0.	.972605236E+06	0.00013	0.59574
750.C	0.	.569610272E+36	0.	•565610272E+05	9 00 00 00	0.99582
7 € O . C	7 •	-582232106E+06	0 .	.582232106E+06	0.00008	0-99589
770.0	0.	-431972335E+06	0 .	.431972335E+06	0.00006	0.95595
7 E G • C	0	-155305267E+06	n .	-155305287E+06	0.00002	0-99597
750.0	0.	.105655471E+06	3 • · · · ·	-105669471E+0E	C. 00001	0.99599
620.0	0.	-830971470E+05	0.	.83C971470E+05	0.00001	1.00000
£40.0	0.	-255683529E+05	0.	+255683529E+05	0.00000	1-00000
TETAL	. 160472405E+10	- 36 32 46 74 3E + 10	-356799955E+09	-759399147E+10		

Table D-2.--Population estimates by sex and size group for Pacific cod.

LEACHH(MH)							CUNULATIVE
100-0	LENGTH(HH)	*** NALES ***	** FEFALES **	** UNSEXEC **	*** TOTAL ***	PROPORTION	PROPORTION
110-0	50.0	0.	0.	-327298642E+06	.327298642E+06	0.00052	0.00052
120.0	1 CO - O	-179465841E+05	0-	-118832967E+07	.120617626E+07	0.00190	0.00241
130.0	110-G	-130822594E+06	.256444465E+06	-139938656E+07	.178665362E+07	0.00281	0.00523
140.0	120.0	-485377775E+06	-573439442E+06	-162475504E+07	~268357226E+07	0.00422	0-00945
150.0	130.0	.608363075E+06	-414254162E+06	-117414566E+07	-219676290E+07	0.00346	0.01291
150.0	140-0	.51879106 EE+0 6	.643427236E+06	-27694134CE+06	-143915964E+07	C-00227	0.01518
160.0	150.0	-592049215E+0E	.755471378E+96	0 -	-134752059E+07	0-00212	0.01730
170.0	160.0	.8334900178+06		0.			0.01945
190.0							
190.0	1 6 0 . G	.727982841E+06	-154562874E+07	.808544073F+05	-235846599F+07	0-00371	0.02560
200.0							0.02808
210.0	200.0	.15092108EE+07		0.			0.03706
220.0	210.0	-14337822EE+07		0.	.334136079E+07		0.03832
230-0	220.0	-21389915 SE+07		0 -			0.04504
240.0 .54407305 2E+07 .61566541 CE+07 0. .115973 846E+0E 0.01826 0.07287 250.0 .74800317 ZE+07 .836507 81 SE+07 0. .15845109 9E+08 0.02495 0.09781 260.0 .10192883 EE+08 .9255883 EE+07 0. .19448867 ZE+08 0.03062 0.12843 270.0 .10852545 ZE+08 .1307 C450 SE+08 0. .23922995 ZE+08 0.03766 0.16610 280.0 .1619186 5 ZE+08 .137344040 E+08 0. .299262 Z3ZE+08 0.04711 0.21321 290.0 .16498 223 ZE+08 .148 E1504 SE+08 .16635862 SE+05 .3139696 3 ZE+08 0.04943 0.26264 300.0 .16159854 ZE+08 .17741345 SE+08 0. .33901200 ZE+08 0.05337 0.31601 310.0 .15791911 ZE+08 .14085210 ZE+08 0. .29877121 ZE+08 0.04704 0.36305	230-0	-311514165E+07	_				
250.0 .748003172E+07 .836507819E+07 0. .158451099E+08 0.02495 0.09781 260.0 .101928838E+08 .92558838EE+07 0. .194488677E+08 0.03062 0.12843 270.0 .108525452E+08 .1307C4505E+08 0. .239229957E+08 0.03766 0.16610 280.0 .161918657E+08 .137344040E+08 0. .299262737E+08 0.04711 0.21321 290.0 .164988234E+08 .148815045E+08 .166358629E+05 .313969637E+08 0.04943 0.26264 300.0 .161598547E+08 .177413455E+08 0. .339012002E+08 0.05337 0.31601 310.0 .157919112E+08 .140852102E+08 0. .298771214E+08 0.04704 0.36305	240.0						0.07287
260.0 .101928838E+08 .925588388E+07 0. .194488677E+08 0.03062 0.12843 270.0 .108525452E+08 .1307C4505E+08 0. .239229957E+08 0.03766 0.16610 280.0 .161918657E+08 .137344040E+08 0. .299262737E+08 0.04711 0.21321 290.0 .164988234E+08 .148815045E+08 .166358629E+05 .313969637E+08 0.04943 0.26264 300.0 .161598547E+08 .177413455E+08 0. .339012002E+08 0.05337 0.31601 310.0 .157919112E+08 .140852102E+08 0. .298771214E+08 0.04704 0.36305	· ·				-		
270.0							
280.0							
290.0 .164982234E+08 .148815045E+08 .166358629E+05 .313969637E+08 0.04943 0.26264 300.0 .161598547E+08 .177413455E+08 0339612002E+08 0.05337 0.31601 310.0 .157919112E+08 .140852102E+08 0298771214E+08 0.04704 0.36305			·				
300.0							
310-0 -157919112E+08 -140852102E+08 0298771214E+08 0-04704 0-36305							
	320.0	.124474167E+08	-126115092E+08	0.	.250589259E+08	0.03945	0.40250
330-0 -102803311E+08 -104431019E+08 0207234330E+08 0-03263 0-43513		-					
340-C -942622732E+07 -869751966E+07 -166358629E+05 -181403828E+08 0-02856 0-46369				=			
350.0 .987385254E+07 .676054972E+07 0156344027E+08 0.02461 0.48830							
360.0 .565673712E+07 .592E06903E+07 0115848062E+08 0.01824 0.50654							
370.0 .39281487£E+07 .422322113E+07 0815136991E+07 0.01283 0.51537							
380.0 .27273634 EE+07 .282785075E+07 0555521923E+07 0.00875 0.52812							
390.0 .237259341E+07 .2932339E4E+07 0530493325E+07 0-00835 0.53647							
400-0 -197058213E+07 .266252775E+07 0463310988E+07 0-00729 0-54377							
410.0 .184115157E+07 .127323412E+07 0311438569E+07 0.00490 0.54667							
420.0 .193101197E+07 .298650351E+07 0491791549E+07 0.00774 0.55641							
430.0 .174024133E+07 .226748834E+07 0400772968E+07 0.00631 0.56272							
440-C .211682255E+07 .271592379E+07 0483274638E+07 0.00761 0.57033		_					
450.0 -233163005E+07 -253018078E+07 0486181087E+07 0.00765 0.57798							
460.0 .264664952E+07 .246E85377E+07 0511550329E+07 0.00805 0.58604	_						·
470-0 -34374515 EE+07 -270 E46707E+07 0574591865E+07 0-00905 0-59508							
480-0 .39087425 (E+07 .317810698E+07 070868496 8E+07 0-01116 0-60624							
490.0 .29346278EE+07 .271075519E+07 0564538305E+07 0.00889 0.61513							-
5CO-C .3C644634(E+O7 .255380433E+O7 O561626773E+O7 O.00835 O.62397		-	=				
510-0 .276569268E+07 .224575756E+07 0501149064E+07 0.00789 0.63186					-		
520.0 .36149706 4E +07 .218359956E +07 0579897020E +07 0.00913 0.64099							

Table D-2 .--Population estimates by sex and size group for Pacific cod (cont'd).

	,					CUMULATIVE
LENGTH(MM)	*** MALES ***	** FEMALES **	** UNSEXED **	*** TOTAL ***	PRCPORTION	PROPORTION
530.0	-357721967E+07	.395036089E+07	-285615998E+05	.755614216E+07	0.01190	0.65289
540-0	-412141817E+07	-280346821E+07	0.	.692488638E+07	C.01090	0.66379
550.0	.49120742 EE+07	-315794747E+07	0 -	-807002174E+07	0.01271	0.67650
560.0	.457416675E+07	-432644017E+07	-166358629E+05	_891724277E+07	0-01404	0-69053
570.0	.545241207E+07	-503054067E+07	0.	-104829527E+08	0.01650	0.70704
580.0	•540975791E+07	-519115256E+07	0.	.106009105E+0E	0-01669	0-72373
550.0	.441416044E+07	_361416518E+07	0-	-802832562E+07	0.01264	0.73637
600.0	-554387744E+07	.580585468E+07	-582506312E+05	-114079827E+08	0.01796	0.75433
610.0	.40448392€E+07	-476614628E+07	-285615998E+05	.883954714E+07	C-01392	0.76824
620.0	-572714117E+07	-461866298E+07	-296768759E+05	.103754810E+08	0.01633	0.78458
€30.0	-615280224E+07	-448427418E+07	-868122309E+05	-107238886E+06	0.01688	0.80146
€40-0	-517513353E+07	.453035743E+07	-576869154E+05	.976317788E+07	C.01537	0.81€83
650.0	-440366031E+07	.379011512E+07	-873637913E+05	-8281139Z2E+07	0.01304	0.82987
660.0	-64067653EE+07	-383777635E+07	.576869154E+05	-103022286E+08	0.01622	0.84609
670.0	-48006930 <i>E</i> E+07	-465539508E+07	-582506312E+05	.951433877E+07	0.01498	0.86107
6 e O . C	-4502815C5E+07	.497647056E+07	0.	-947928561E+07	0.01492	0.87599
650.0	-482058343E+07	.407399956E+07	.285615998E+05	-892314459E+07	0.01405	0.89004
700.0	-437975463E+07	.364654236E+07	.879275071E+05	.811422451E+07	0.01277	0.90282
710.C	•26917548EE+D7	- 488588877E+07	o .	.757764363E+07	0.01193	0.91475
720.C	-209188853E+07	-224583954E+07	-296768759E+05	•436740535E+07	G= 00688	0.92162
730.0	-293619674E+07	.329370948E+07	-285615998E+05	.625846782E+07	0.00985	0.93147
740.0	•17523202CE+07	.339827849E+07	0.	.515059870E+07	0.00611	0-93958
750.0	-203567583E+07	•336585613E+07	-291253156E+05	•543065727E+07	0-008 55	0.94813
760.0	-1573108€@E+07	-243600900E+07	-285615998E+05	.403967920E+07	0.00636	0.95449
770-0	-134722381E+07	-249539463E+07	0 -	-434261844E+07	C-00684	0-96133
780.0	-11699865CE+07	-167462707E+07	0 -	.304461357E+07	0-00479	0-96612
790.0	-11141404CE+07	_247775216E+07	-291253156E+05	-362101787E+07	6-00570	0-97182
E C O - O	-954455754E+06	-155678730E+07	0 •	.251324305E+07	0-00396	0.97578
£10-0	-439628848E+06	-172711072E+07	0.	.216673957E+07	0-00341	0.97919
620-C	-490802843E+06	-125619908E+07	0.	-174900192E+07	0.00275	0.98195
0.08	.483786085E+06	-133435710E+07	0.	-181814319E+07	0.00286	0-98481
£40.0	-204586255E+06	.131339778E+07	0.	-151798407E+07	0.00239	0.98720
850-0	-245807221E+06	-936879543E+06	0 -	-118268676E+07	0.00186	.0.98506
0.033	•571243262E+06	-959466266E+06	0 -	.153070953E+07	0.00241	0.93147
E70.C	.312134261E+06	-386875859E+06	0.	-699010123E+06	0.00110	0.99257
0.093	-149197311E+06	-744000132E+06	0 -	-893197443E+06	0-00141	0.99398
£90.0	-302	-733819787E+06	0.	-103681909E+07	0.00163	0.99561
900.0	-498259057E+05	-633966185E+C6	0.	.683792091E+06	0.00108	0.99668
910-0	.838029142E+05	-439078348E+06	0.	.522881263E+06	0.00082	0.99751
920-0	0.	.231779711E+06	. 0.	-231779711E+06	0.00036	0.99787
930.0	0.	.42656723 7 E+06	0.	.426567287E+CE	0.00067	0.99854
940-0	•316592565E+05	-305801406E+06	0.	.337460663E+06	0.00053	0.99508
560.0	-78026972EE+05	-132319127E+06	0 •	-210346100E+06	0.00033	0.99941
970-0	-173290235E+05	-111641030E+06	0.	-128970054E+06	0.00020	0.99961

Table D-2. --Population estimates by sex and size group for Pacific cod (cont'd).

LENGTH(NH)	*** MALES ***	- ** FEMALES **	** UNSEXED **	*** TOTAL ***	PROPORTION	CUMULATIVE PROPORTION
\$80-0	-647285653E+05	-653346314E+05	0 -	-130063197E+06	0-00020	0-99981
990.0	0.	.339396311E+05	0.	.339396311E+05	0.00005	0.99587
100-0	.331058031E+05	0.	0.	.331058031E+05	0.00005	0.99992
1040.0	0.	-505610678E+05	0.	-505610678E+05	0-00008	1-00000
TCTAL	-31220673CE+09	-316098066E+09	-687600991E+07	.635180806E+09		

Table D-3 .--Population estimates by sex and size group for sablefish.

	•					•	CUMULATIVE
LENGTH(MK)	*** MALES ***	** FEYALES **	** UNSE	XED **	*** TOTAL ***	FRCPORTION	PROPORTION
460.0	.647 \$1531 2E +0 5	0 -	0.		-647915812E+05	0.01166	0.01166
470.0	-239770663E+06	.127732686E+06	0.		-367503349E+05	0.06613	0.077/9
480.0	•176d29558E+06	-336113931E+06	0.		-512943490E+06	0-09230	0.17010
490.0	. 176d2955EE+06	0.	0.		.176829558E+06	0.03182	0.20192
500.0	-647915812E+05	.112037577E+05	0.		-176829558E+06	0.03182	0.23374
510.0	-304562244E+06	.351 E08640E+06	0 -		.656370885E+06	0.11811	0.35185
520.0	.368867535E+06	.560189886E+06	0.		.849057421E+06	0.15279	0.50464
530.0	-304562244E+06	0.	0.		-304562244E+0E	C-05481	0.55544
540.0	J.	.495236035E+06	0 -		.495236035E+06	0.08912	0.64856
550.0	•127732686E+06	.2888675352+06	0.		.416600222E+06	0.07497	0.72353
560.0	-112037977E+06	0.	0.		-112037977E+D6	0.02016	0.74369
570.0	•192524267E+06	0.	٥.		-192524267E+06	0.03464	0.77833
580.0	- 288867535E+U 6	.1277326&6E+06	0.		-416600222E+06	0.07497	0.35330
590.0	-127732686E+06	.1120379775+06	0.		-239770663E+06	C.04315	0.89645
610.C	•112037977E+06	-192524267E+06	0.		-304562244E+06	0.05481	0.95125
620.0	.647515812E+05	.647915812E+05	9 •		-1295831625+06	0.02332	0.97457
640.0	0.	•112037977E+0€	0.		-112037977E+06	C.02016	0.99473
TOTAL	-26467296 EE+07	289111118E+07	0.	÷	-552784066E+07		

Table D-4.--Population estimates by sex and size group for yellowfin sole.

LELCZU (MA)						CUMULATIVE
LENGTH (HH)	*** MALES ***	** FEMALES **	** UNSEXED **	*** TOTAL ***	PROPORTION	PROPORTION
70.0	-379820524E+06	-471946700E+06	0 -	-135176722E+07	0.00009	0-00009
80.0	-115406165E+08	-595131038E+07	0.	-174921269E+08	0.00116	C.00124
90.0	.10287452(E+0E	-56346674CE+07	0.	.159221194E+08	0.00105	0.00230
100.0	-714346848E+07	.75064214 0 E+07	0.	-146498899 <u>1</u> +08	0.00097	0.00326
110.0	-1216135812+08	.648307876E+07	0.	-196444368E+08	0.00123	0.00449
120.0	-297314825E+U8	-2424C51C5E+08	0.	.53971993CE+08	0.00356	0.00606
130.0	.69258977 SE+08	.627724547E+J8	o -	• 1 3 2 0 3 1 4 3 3 E + 0 9	0.00872	0.01678
140-0	•11052295 EE+09	-114605114E+09	0.	-2251280 72 E+09	0.01437	0.03164
150.0	.976034651E+08	.958697261E+08	o .	-193493191E+09	0.01278	0.04442
160.0	-828697072E+08	.750328435E+J8	0 -	-157902551E+09	0-01043	0-05484
170.0	.68102497	.837987361E+08	0.	•151901234E+09	C.01003	0.06487
180.0	.79512474EE+08	-655150965E+08	n .	.145027571E+09	C.00958	0.07445
150.0	.776177405E+UE	.936465 <u>4</u> 67E+09	0 -	-171266727E+05	0-01131	0.08576
200.0	-100669585E+09	-109221459E+09	0 -	-209891044E+09	0.01386	0.09962
210.0	.173730638E+09	•157275870E+09	0.	-331006507E+09	0.02186	0.12148
220.C	.286968303E+09	-223506466E+09	9.	-510874769E+09	0.03373	0.15521
230.0	.452701152E+9 <i>9</i>	.362645758E+09	0.	•834746950€+09	0.05512	0.21033
240.0	-633530741E+09	.538355348E+09	0.	-117188609E+10	0-07738	0.28771
250.C	.8610681178+09	.662 996 078E +09	0.	-152406419E+1G	0.10054	0-38634
260.0	-973449255E+09	.744995851E+09	0 •	-171844515E+10	0-11347	0.50181
270.0	-879078568E+0S	.794285307E+09	0.	-16733638EE+10	0-11049	0.61231
280.0	.700444155E+U9	.849510657Z+09	7.	-154995481E+10	0-10234	0.71465
290.0	-423/16421E+09	.803677185E+09	.3250717352+05	-122762519E+10	0-08106	0.79571
300-0	.246470191E+05	.781253744E+09	n •	-102772393E+10	0-06786	0.86357
310.0	-120390817E+09	.617633724E+09	0.	-73E024541E+05	C-04873	0.91231
320.0	-454429334E+0€	.496557758E+09	0 -	•542000691E+09	0.03579	0.94809
330.0	• 3252555 4 4E+0 9	.314652660E+09	0.	.347178214E+09	0-02292	0.97102
340.0	•1045253775+0 E	.2033163605+09	0 .	-213768897E+09	0-01412	0.98513
350.C	-166024431E+07	.948291357E+08	0.	-964893801E+08	0.00637	0.99151
360.0	.2011265028+07	.620183589E+08	0.	-640296240E+0 @	0-00423	0.99573
370.0	0.	.3/1437782E+08	0 -	•371437782E+08	0.00245	0.99819
3 E O . G	•6137819\$\$E+06	.1352318115+08	0.	-141369622E+08	0-00093	0.59512
350.C	0.	.729246?3ºE+07	0.	.729246238E+07	0-00048	0.99960
400.0	0.	.328E47268E+07	0.	-3288472682+07	0.00022	0.99982
410-0	0.	.30375938CE+06	0.	-30375938CE+06	0-00002	0.99584
420.0	0.	.424542070E+96	0 •	-42454207 CE+06	0.00003	0.99987
430.0	0.	.100968542E+07	0.	-100968542E+07	0.00007	0.99993
440.0	0.	-1009€8542E+07	0.	-10C968542E+07	C- 0 C 0 0 7	1.00000
1GTAL	.560215647E+10	.854227826E+10	_325971735E+05	.151444673E+11		

Table D-5 .--Population estimates by sex and size group for rock sole.

LENGTH (MM)	*** MALES ***	** FEMALES **	** UNSEXED **	*** TOTAL ***	FROPORTION	CUMULATIVE PROPORTION
60.0	•594693255E+06	-577175541E+06	0.	-117187284E+07	0.00021	0.00021
70.0	-719051642E+06	-155363632E+06	.195304251£+07	.282745779E+07	0.00050	0.00071
0.09	.19898369(£+07	-138112334E+07	-1307C3985E+0E	-164418591E+0E	0.00292	0.00363
90.0	-428547754E+07	-406E70317E+07	_77192716CE+07	-160734527E+08	0.00285	0.00 649
100.0	•106557535£+08	•104741113E +08°	.680959339E+07	-279394582E+08	0-00496	0.01145
110.0	.39053826 <i>E</i> E+08	-249669585E+08	-230157309E+0E	.86936516CE+08	0.01544	0-02689
120.C	•590219371E+08	-396C46747E+DE	.324979316E+08	.131124543E+09	0-02329	0.05018
130.C	•107612942E+05	.6839582215+06	.258581055E+08	.2018668702+09	C-03585	0.08603
140.0	-133241987E+09	•923614933E+08	-203639317E+0E	.2459674072+09	0.04369	0.12972
150.0	-170324391E+39	-116C33256E+09	-161115466E+06	-302469194E+09	0.05372	0-19344
160.0	•153435063E+09	-106453625E+09	.100163886E+08	-269905076E+09	0-04794	0.23138
170.0	-122923007E+09	-973654742E+08	-144714348E+0E	.234759916E+09	0-04170	0.27307
180.0	•11739405EE+09	-96630C989E+08	·434E23624E+07	-21E372393E+09	0.03879	0.31185
190.0	-137523673E+05	.925646052E+08	-96083115EE+06	-230954110E+09	C-04102	0.35288
200.0	-14625300EE+05	-880915155 <u>E</u> +08	.309364383E+06	.234653886E+09	0.04168	0.39456
210.0	-10430982CE+09	.610584285E+C8	-103427455E+07	.1664025232+09	C-02955	0.42411
220.C	-115280387E+09	-565754923E+08	-831091567E+06	-172686971E+09	0-03067	0.45473
230.0	.138912776E+09	.786128204£+08	.831091567£+06	.21E356690E+09	0.03878	0.49357
240.0	-1631190 E 1E+09	.821620547E+08	.235475944E+07	.252655895E+09	0-04487	0.53844
250.C	-198724015E+05	-115526868E +09	.234566186E+07	.316596549E+09	0.05623	0.59467
260.0	-224447155E+09	.117868914E+09	.969606829E+06	.343285716E+09	0.06097	0.65564
270.C	-231462905E+09	.142279218E+09	0.	.3737421282+09	C-06638	C.72202
280.C	-222909272E+09	-124084317E+09	.124663735E+07	.348240727E+05	· 0.06185	0.73387
290-0	•146337132E+09	-116535049E+09	.170849122E+06	.263047030E+09	0-04672	0.83059
300.0	-78490409(E+0&	-117769696E+09	-277030522E+06	.196537135E+09	0.03491	0.36550
310.0	.3302739C(E+0E	-96528132CE+08	-138515261E+06	-129694037E+09	0.02304	0.38854
320.0	•1543803dfE+0 8	-105914127E+09	.138515261E+06	.121490681E+09	0-02158	0.91012
330-0	-958E13912E+07	.721488643E+03	-138515261E+06	.818755182E+0E	0.01454	0.92466
340.0	-238736712E+07	.7625348995+08	0.	.78640857CE+0E	0-01397	0.93862
350.0	-1111345 EEE+07	-752094456E+08	0 -	.793207914E+08	0-01409	0.95271
360.0	.103969205E+07	-727335183E+08	0.	.737732104E+0ë	0.01310	0.96582
370.0	.481592966E+06	.638968203E+0E	0.	.643784133E+08	0-01143	0.97725
3.0.0	-134463552E+07	-373934648E+08	0.	.387381004E+08	C-00688	0.98413
350-0	-695568276E+06	.195957408E+08	0.	.20291 309 1E+0 8	0-00360	0.987/3
400.0	0.	.2052338235+08	0.	.205233823E+0E	0.00365	0.99139
410.0	0.	-152456966E+08	0.	.152456966E+08	0-00271	0.99409
420.C	0.	-907070602E+07	0 -	.907070602E+07	0.00161	0.99570
430.0	0.	.732330772E+07	0.	.732330772E+07	0-00130	0.99700
440-C	0.	-41925149éE+37	ð.	.419251496E+07	0-00074	0.59774
450.0	0.	-289459807E+77	0.	.2894598072+07	0.00051	0.99826
460.0	0.	-1543666645+07	0.	.154366664E+07	0.00027	0.99853
470.0	7.	-171545188E+07	0.	.171545188E+07	C-00030	0.99884
480.0	0.	•122724785E+06	0.	-12272478 9E+06	0.00002	0.99886
500.0	0.	.723448789E+06	0 - 1	.723448789E+0E	0.00013	0.99899

Table D-5.--Population estimates by sex and size group for rock sole (cont'd).

LENGTH (MM) 510.0	*** MALES ***	** FEMALES ** •122724785E+06	** UNSEXEC **	*** TOTAL *** •122724785E+06	FRCPORTION 0.0C002	CUMULATIVE PROPORTION 0.99501
TCTAL	- 2899140476 + 10	25376731 05 +10	1678928575409	. 562469651E410		

Table D-6. --Population estimates by sex and size group for flathead sole and Bering flounder.

						CUMULATIVE
LENGTH(HH)	*** MALES ***	** FEMALES **	** UNSEXED **	*** TOTAL ***	FRCPORTION	PROPORTION
70.0	.762102664E+06	0 -	0.	-762102664E+06	0.00040	0.00040
80 - C	-4990954C5E+06	-685708068E+05	.54253735CE+06	.111020356E+07	C_ 00059	0.00099
50.0	-802859712E+06	.490157635E+06	-173146465E+07	- 302448199E+07	0-00160	0.00260
100.0	. L82971693£+07	.216015t96E+07	-459046536E+07	.858033425E+07	0-00455	0.00715
110.0	.78872247EE+07	.371096658E+07	.695916856E+07	.185573599E+08	0.00984	0.01 € 99
120-0	-162459523E+08	-129321083E+08	.875910885E+07	-379371795E+09	0.02012	0.03710
130.0	-163885185E+08	-213072027E+08	-818293984E+07	-458787110E+08	0.02433	0.06143
140.0	.249EE721EE+08	.210289687E+G8	-122801857E+08	-58297876CE+0E	0.03091	0.09235
150.0	.299395854E+08	.358977411E+08	.102437287E+08	.761310593E+06	0.04037	0.13272
160.0	.489946745E+OE	-425717600E+08	.302417597E+07	-945906108E+08	0.05016	0.18283
170.0	.453612595E+08	.381000825E+98	.65095812CE+0E	.84312300CE+08	0.04471	0.22758
1 80 - 0	.380717417E+08	-349676072E+08	-144897884E+06	.731842468E+08	0-03881	0.26639
190-0	.36235396(£+08	-26968577 0 E+08	0.	-652039730E+08	0.03458	0.30097
200.0	.318339957E+0E	.258614326E+05	. 869387303E+06	-585648656E+0E	0.03106	0.33202
210.0	.343730292E+08	.29464a922E+08	-289795768E+06	-541277172E+08	003401	0.36603
220.0	- 172068927E+08	- 35512799 0 E+08	-144897884E+06	-72964589EE+08	0.03869	0.40472
230.0	.4205251515+08	.335067502E+08	.289795768E+06	.758490610E+08	0.04023	0-44494
24C-G	.391594332E+0E	.406711186E+98	.434693652E+06	.802652454E+08	0.04256	0.48750
250.0	.398984351E+08	-311506604E+08	-144897884E+06	.711940434E+0E	0.03775	0.52525
260.0	.433354945E+08	.359596813E+08	.869337303E+06	.802085636E+08	0.04253	0.56779
270.0	.436963361E+08	.350420378E+08	.434693652E+06	.791730675E+08	0.04198	0.60 577
0.055	.468735324E+08	-414746527E+08	.434693652E+06	-907828787E+08	0.04814	0.65791
290.0	.459993145E+0E	.391725596E+08	.289795768E+08	-854616702E+08	0-04532	0.70323
300-0	.494280645E+08	.413239524E+08	.72448942CE+OE	-914765063E+08	C. 04 E51	0.75174
310.0	.42739432CE+08	.336281654E+08	.289755768E+06	•816573932£+08	0-04330	0.79504
320.0	.410286911E+0e	.3935171208+08	.724489420E+06	-811048926E+08	0.04301	0.83804
330.0	.310960767E+06	.422544471E+08	-434693652E+0E	.737852174E+0E	0.03913	0.87717
340.0	.243682184E+08	.456394370E+08	.289795768E+06	.695974511E+08	0.03712	0-91429
350.0	.12203413fE+08	-357098343E+08	.144897884E+06	-480581458E+08	0.02548	0.93977
360.0	.585329543E+07	.323603067E+08	.434693652E+06	.38648297 EE+08	0-02049	0.96027
370.0	.239312305E+07	.229601076E408	-144897884E+06	-25498126EE+0E	0.01352	0.97379
300.0	.367939744E+07	.162274713E+08	o •	-19906858E+0E	0.01056	0.98434
390.0	.660712821E+0 E	-115847801E+08	0.	·122454929E+08	0.00649	0.99084
400.0	.146934573E+J6	.613965713E+07 .	0.	.63365917CE+07	0.00336	0.99420
410-0	0.	-439504967E+07	€ .	-485504867E+07	0-00260	0.99679
420-0	0.	-334136161E+07	0.	.334136161E+07	0.00177	0.99656
430_C	0.	.894776478E+G6	0	-894778478E+06	0.00047	0.99504
440.0	0.	-369E31C72E+D6	ı) .	-369631072E+06	. 0.00020	0.99924
450.0	0.	-198140910E+06	0.	•198140910E+06	C-00011	0.99934
460.0	.15640746EE+06	. 632297311E+06	0.	.788704779E+06	C. DCO42	0.99576
470.0	J.	.431654086E+26	0.	-431854086E+0E	C. 00023	0.99599
490.0	0.	-232706358E+05	0.	• 23270635 EE +05	0.00001	1 - 0 0 0 00
TCTAL -	.88314365(£+09	-933176765E+09	-544994731E+08	-186531991E+10		

Table D-7.--Population estimates by sex and size group for Alaska plaice.

LENGTH(MM)	*** MALES ***	** FEMALES **	**	UNSEXED ★★	*** TOTAL ***	FROPORTION	CUMULATIVE PROPURTION
130.0	0.	.628733755E+05	0.	ON 25 YED **	.628733755E+05	0_00005	0-00 CD 5
140-0	•292589155E+05	0.	0.		-292589155E+05	0.00002	0.00007
150.0	.104756993E+06	• 349189976E+05	0.		-139675990E+06	0.00010	0.00017
160.0	.201194002E+06	• 104756993E+06	0.		.30595C995E+06	C. 00023	0.00017
170.0	.3435298546+06	•104730793E405	0.	4	.413367889E+06	0.00023	0.00071
180.0	.548534886E+06	• 291766326E+06	0.		.940301213E+06	0.00031	0.00071
190.0	.423122333£+06	• 546398523E+06	0.		-969520356E+06	C-00072	0.00140
200.0	· · · · · · · · · · · · · · · · · · ·						0.00212
210.0	.649007675E+06	•5381G5816E+06	0-		-11871135CE+07	0-00088	
	.106466824E+07	-417145591E+06	0-		.148181783E+07	0.00110	0-00410
220.0	.159/0/689E+07	-970845392E+06	0.		.25679222EE+07	0.00191	0.00601
230.0	.4046174C5E+07	-20546275CE+07	0.		-61C080159E+07	0.00453	0.01054
240.0	.598308199E+07	-356844033E+07	0 •		.955152233E+07	0.00709	0.01763
250.0	.664345285E+07	- 441615373E+07	<u>0</u> •		-110596066E+08	0-00821	0.02584
260.0	-123449261E+0d	-552251939E+07	9.		.178674457E+08	0.01326	0.03510
270.0	.1602586G(E+08	-913C47285E+07	e •		-251563329E+08	0.01867	0.05778
20.0	.338415704E+08	•914E38520E+07	0 -		.42989955€€+08	0.03191	0.08969
290.0	.488542575E+08	-14634194CE+08	ō•		.63488451 9E+0 8	C.04713	0.13681
3 (0 - 0	.815243431E+08	-167170962E+08	0 -		.982414393E+08	0.07292	0-20974
310.0	.102584232E+09	-165C04120E+08	0 -		.121084643E+09	0.08988	0.29962
320.0	-104000003E+09	-211417804E+08	0 -		-125141783E+09	0.09289	0.39251
130.0	.99670764CE+08	.2517E8572E+08	9 -		-124849621E+09	C. 0 92 67	0.48519
340.0	-361319553E+08	-339325749E+08	0 -		-120064530E+09	0-06912	0.57431
350.0	.494227282E+08	.3u7617449E+08	0.		.801844731E+02	0.05952	0.63383
360.0	.296961917E+08	-365E45216E+08	0.		.662807133E+08	0.04920	0.68302
370.0	-104460376E+08	-509414047E+08	o.	•	.613874423E+08	0.04557	0.72 859
360.0	.453002947E+07	-45534345 EE +08	0.		.500643742E+08	0.03716	0.76575
35G.O	-125946135E+07	.469235446£+08	0.		-421930059E+08	0.03577	0.30153
400.0	-468821716E+06	-434C10324E+08	0.		.43869d541E+08	0-03256	0.83409
410.0	.348646647E+06	• 384262323E+08	0.		-387751311E+08	0.02878	0.96287
420.0	0.	-48 3946929E+ 08	0.		.483546925E+08	0-03592	0.89883
430.0	.541508336E+05	-346110326 <u>E</u> +0€	0 -		.346751334E+03	0.02574	0.92454
440.0	0.	-243653563E+08	0 -		-243653563E+08	0.01609	0.94262
450.C	0.	•163238455E+08	0 -		.1632384652+08	0-01212	0.95474
4 E O . C	0.	-104651269E+08	0 -		.10465126 9E+08	C-00777	0-96251
470-0	0 _	-5730634745+07	0 -		-573063474E+07	0.00425	0.96675
480.0	.120218938£+06	.432077524E+07	0 •		-444099417E+07	0-0C330	0_97C06
490.G	ე•	-205121047E+07	ŋ.		-205121047E+07	0.00152	0-97158
5 CO. O	o.	• 165469235E+07	0.		.105469235E+07	0-00078	0.77236
510.0	0.	•111E82217E+07	0.		-111892217E+07	C-00083	0.97319
520.C	0.	-5968C3744E+C6	0.		-596803744E+05	0-00044	0.97364
530.0) <u> </u>	-331 6853215+05	0 -		-3318853215+0€	0.00025	0.97368
540.0	0.	-223260378E+06	0.		.223260878E+06	0.00017	0.97405
550.C	0.	-14459C967E+0€	0 -		-144590967E+0E	0-00011	0-97416
TUTAL	.70307825EE+09	-509267774E+J9	0.		-131236603E+10		

Table D-8.--Population estimates by sex and size group for Greenland turbot.

		•				CUMULATIVE
LENGTF(MM)	*** MALES ***	** FEMALES **	** UNSEXED **	*** TOTAL ***	PROPORTION	PROPORTION
100-0	-355542994E+05	0-	0.	-355542994E+05	0.001€0	0.00160
120.0	.35317270EE+05	0.	0.	.353172708E+05	C-00159	0.00319
140.G	-34852565EE+05	2.	0.	.348525698E+05	0.00157	0.00476
150.0	.35317270EE+05	0.	0.	.353172708E+05	0.00159	0 . 0∪ € 35
160.0	.353172708E+05	.355542994E+05	0.	-708715702E+05	0.00319	0.00954
170.0	ა.	.355542994Ē+05	0.	-355542994E+05	0.00160	0.01114
100.C	.355542994E+05	.355542994E+05	0 - 1	-711085989E+05	0.00320	0.01434
190.0	.355542954E+05	.1066628985+06	0.	-142217198E+06	0.00640	0.02074
200.0	.884282202E+05	.106188841E+06	0.	-194617061E+0E	0.00876	0.02950
210-C	.706345415E+05	0.	0.	.706345415E+05	0.00318	0.03267
220.0	• 35317270EE+05	.353172708E+05	0.	.706345415E+05	0.00318	0.03585
230.0	•35317270EE+05	-353172703€+05	0.	.706345415E+05	0.00318	0.03503
240.C	•353172708E+05	0.	0.	-353172708E+05	0.00159	0.04062
250-0	.3579453122+05	0.	· 0 •	.357945312E+05	0.00161	0.04223
260.0	-105487111E+06	0.	0.	-105487111E+06	C-00475	0.34658
270.C	-106188841E+06	.706345415E+05	0.	•175823383E+06	0.00796	0-35494
2 60 • 0	•71348830£E+05	.353172708E+05	0.	-106666101E+06	0.00480	0-05974
290.0	.35317270EE+05	.3531727085+05	0 -	.706345415E+05	0.00318	0.06292
3 C O + O	-10642587(E+06	-21144828CE+06	0.	-31787415CE+06	0-01431	0.07722
310.0	-140804382E+06	-706345415E+05	0.	-211438924E+06	0.00952	0.08674
320.0	-10642587CE+06	.3485256982+05	0 •	-141278439E+06	0.00636	0.09309
330-0	.248421801E+06	.281666CCCE+06	0 .	.53CC87801E+06	0. J2386	0.11695
340.0	-353191421E+06	.282560032E+06	0.	-635751503E+06	0-02661	0-14556
350.0	•31530426(E+0€	.176131009E+06	0.	-491435269E+06	0.02212	0.16768
360.0	-283274371E+06	-181125907E+06	0.	-46440027EE+0E	0.02090	0-18858
370.8	.422669014E+06	.458918764E+06	0.	.881587777E+06	0.03967	.0.22825
380.0	-457075285E+06	- 319598304E+06	n .	.777073585E+06	0.03497	0.26322
390.0	.297774252E+0E	-282316836E+06	0.	-580091088E+06	0-02611	0.28533
4 CO - C	.608055543E+06	-171584453E+U7	O .	-232790048E+07	0-10476	0.39409
410.0	•573458302E+96	.389216763E+06	0.	•106267507E+07	0.04782	0.44191
420-0	•537426655E+06	.529602893E+06	0.	•116722955E+07	0.05253	0.49444
430.0	- 512291787E+06	-454CG3113E+0€	e.	-966294900E+06	C-04349	0.53793
440.0	.47989407CE+06	.505748020E+76	0 -	.985642090E+06	0.04436	0.58228
450.0	-263627931E+0.6	- 35 34 34 85 5E +06	0.	-617062767E+06	0.02777	0.61005
460.0	-279387385E+06	. 383589902E+06	e .	-66297729CE+06	C.02984	0.63989
470-0	.404676271E+06	.73235\$426E*06	0.	•118703570E+07	0.05342	0.69331
4 80 - 0	•240559372E+0€	.671546034E+06	0 .	.912105406E+06	0.04105	0.73436
490.0	-412790282E+0E	.346877560E+36	0.	.799657841E+06	0.03599	0.77035
500.0	-140815942E+06	.261E58352E+06	0.	-422675294E+06	0.01902	0.75537
510.0	.2955103€(E+0€	- 302259589E+06	0 -	•598169969E+06	0.02692	0.81629
520.0	.708715702E+05	.228069112E+06	0.	.298940682E+06	0.01345	0.82574
530.0	-1195516\$\$E+06	-711118C2CE+35	0-	-190663501E+06	0.00858	0.33832
540.0	•153612324E+06	. 2811472032+06	0 -	-439759527E+06	0.01979	0.85811
550.0	.10455771(E+06	-244363280E+06	0.	-34E92O989E+06	C-01570	0.87381

Table D-8.--Population estimates by sex and size group for Greenland turbot (cont'd).

TOTAL	1056240775400	1111576976100	0		21 6786 0565+08		
730.0	0.	.350833816E+05	0.		.350833816E+05	C-0015d	0.98511
710-0	0.	.350£33816E+05	0 -		-350833816E+05	0.00158	0.98753
620.0	C •	.105455671E+06	0.		-105499671E+06	0.00475	0.98595
610.C	J.	-348525698E+05	J.		- 348525698E+05	0.00157	0.98120
600.0	.701 6676 31E+0 5	.105499671E+06	0 -		-175666434E+06	0.00791	0.97963
550.0	•107 38 35 5 4E+0 €	0.	0.		-107383594E+0€	0.00483	0.97173
5 60 - 0	0.	.350 £33 £16E +05	0.		.350833816E+05	0-00158	0.96689
570.0	-134955653E+07	.228062995E+06	0.		.157761943E+07	0.07100	C.96532
560.0	•353172708E+05	.420329936E+06	0 .		.455647206E+06	0-02051	0.89432
LENGTH(MM)	*** HALES ***	** FEMALES **	** UNSE	** 03K	*** TOTAL ***	FREPORTION	PROPORTION
							CUMULATIVE

Table D-9.--Population estimates by sex and size group for arrowtooth and Kamchatka flounders.

						CUMULATIVE
LENGTH(MM)	*** HALES ***	** FEMALES **	** UNSEXED **	*** TOTAL ***	FROPORTION	PROPURTION
50.0	0.	0.	.229324277E+05	-229324277E+05	0.00004	0-00004
100.0	0.	.174670309E+05	0.	.174670309E+05	C.00003	0.00007
120.0	0.	.406323523E+05	0.	.406323523E+05	G_ 0 C 0 O 7	0.00015
130.0	-216575975E+06	- 150265512E+06	0.	.366841387E+06	0.00066	0-00081
140.0	.993237265E+06	.172956302E+06	0.	.116619357E+07	0.00211	0-00292
150.0	.206118953E+07	.14176786CE+07	0.	.347906853E+07	0.00629	0.00921
160.0	.31194814CE+07	.561425217E+07	0 -	.873373357E+07	0.01579	0-02499
170.0	.331073262E+07	.493706680E+07	0.	.874779962E+07	0-01581	0.04080
180.0	·276763033E+07	.5275644C3E+C7	0.	.8C4727436E+07	0.01455	0.05535
190.0	.13267371(E+07	.368767232E+07	0.	-501440992E+07	0-00306	0-06441
200.0	.168924077E+07	.279431391E+07	0 .	.448355468E+07	0.00210	0.07251
210.0	.79217677€E+0€	.226232199E+07	0.	.305449876E+07	C.00552	0.07804
220.0	.426295227E+06	.257228587E+07	0.	-30985811CE+07	0.00560	0.98364
230.0	.11209636EE+07	-233150878E+07	0.	.345287244E+07	0.00624	0.08588
240.0	.414385969E+07	.277521362E+07	0.	.691907331E+07	C-01251	0.10233
250.0	.5535 £74 8 £E+0 7	-613660992E+07	0 •	.116724848E+D8	0-02110	0.12348
260.0	.117077032E+08	-110378859E+08	0.	.227455931E+08	0-04111	0-16459
270.0	-139C35237E+08	.1765572552+08	0.	_315592492E+08	0.05704	0.22163
2 E C • C	.216394601E+08	.22043170CE+08	0.	.436826301E+08	C.07895	0.30059
250.0	-227568622E+08	-235721053E+08	0 -	-463289675E+08	0.08374	0.38433
300.0	-243154569E+08	- 326574196€+08	0.	.5697287655+08	0-10298	0.48730
310.C	.137854728E+08	-3045615485+08	0.	.492816276E+08	0.08907	0.57638
320.0	.109511873E+08	-283E15504E+38	0.	.393727377E+08	0.07116	0.64754
330.0	.839222923E+07	-167192541£+08	0.	.251114834E+08	0.04539	0.69293
340.0	.71689118(E+07	.1422C9065E+08	0.	.213898183E+06	0.03866	0.73159
350.C	.6510274852+07	.839657518E+07	0.	.154068501E+08	0.02785	0-75944
360-0	-580181231E+07	.763217213E+07	0.	-134339844E+08	0.02428	0.76372
370.0	.493265757E+07	.755323754E+07	0.	.124858951E+08	C.02257	0.80628
380.0	-239598623E+07	-690468742E+07	0 •	.930467365E+07	0.01692	0.92310
350.0	-32890 97 4 1E+0 7	.791 EE1540E+07	0.	-112079128E+08	0.02026	0.84335
400.0	-282739767E+07	-724921343E+07	0.	.100766111E+0E	0-01821	0.86157
410.0	-191286124E+07	.615295125E+37	0.	.796581249E+07	0-01440	0.37597
420-0	-217253021E+07	.742202313E+07	0 .	.959455335E+0 <i>7</i>	0.01734	0.89331
430.0	.165762274E+07	-751088152E+07	0.	.936850426E+07	0.01693	0.91025
440.0	.5547219E7E+06	-738303332E+07	0.	.793775530E+07	C-01435	0-92459
450.C	•561448553E+06	-934534781E+07	o.	.104067964E+0E	0.01881	0.94340
460.0	-46645866(E+U6	-601651434E+07	0.	-64E297300E+07	0.01172	0.95512
470.0	.483499347E+06	.327746628E+07	0.	.376096563E+07	G.0C680	0.96192
4 6 0 • 0	.613129965E+06	-219961985E+07	0.	-261274971E+07	0.00508	0.96700
490.0	•134185547E+06	.167317698E+07	9.	-180736253E+07	0.00327	0.97027
500.0	•122551613E+06	.128459136E+07	0.	.140714318E+07	0.00254	0.97281
510.0	-105967075E+06	.948E66071E+06	0.	-105483315E+07	0.00191	0.97472
520.0	0.	· 266723468E+06	0 -	.266723468E+06	0.00048	0.97520
530.0	0.	.128489232E+07	0.	•128489282E+07	C.00232	0.97752

Table D-9.--Population estimates by sex and size group for arrowtooth and Kamchatka flounders (cont'd).

	,					CUMULATIVE
LENGTF (MM)	*** HALES ***	** FENALES **	** UNSEXED **	*** TOTAL ***	PROPORTION	PROPORTION
540-0	.682334725E+05	-139203048E+07	0.	-146026395E+07	0.00264	0.90016
550.0	0.	-193968311E+06) .	-19E968311E+06	0.00036	0-98052
560.C	0.	-107255532E+07	0.	-105259532E+07	0.00197	0-98250
570.0	0.	-465287060E+06	0.	.465287060E+06	0.00084	0.98334
5 8 0 • 0	0.	•518957916E+06	0 -	.518957916E+06	C- 00094	0.98428
590.C	0.	-763136779E+06	0.	-783136779E+0€	0.00142	0.98569
600.0	0.	■6585523835+06	0.	•658552383E+06	0.00119	0.98688
610.0	0.	-260ê45917£+06	0.	-260845917E+06	0-00047	0.98735
£ 20 - C	0.	-568615497E+0€	0.	.568615497E+06	0.00103	0.98838
630.C	n.	.25332777 9E+06	0.	.258327779E+06	0.00047	0.98885
640.0	0.	-356773447E+05	0.	.3567734472+05	0.00006	0.98891
650.0	0.	.845052717E+05	0.	.845052717E+05	C. CC015	0.98506
670.0	0.	-376727597E+05	0.	.376727597E+05	0-00007	0.98913
TGTAL	-202379235E+09	• 344850628E+09	-229324277E+05	.547252800E+09		

Table D-10.--Population estimates by sex and size group for Pacific halibut.

LENGTH(MM)	*** HAL	ES ***	**	FEMALES	**	** UNSEXEC **	*** TOTAL ***	PROPORTION	CUHULATIVE PROPORTION
140.C	0.		0.			.162962242E+05	-162962242E+05	0.90048	0-00048
160.0	0.		0.	-		.162962242E+05	-162952242E+05	0.00048	0.00096
100.0	0.		0.			-28617429CE+05	-28617429CE+05	0.00085	0.00181
200.0	0.		0.			.116396382E+06	-116396382E+06	0.00344	0.00524
210.0	0.		0.			.805071672E+05	.805071672E+05	0.00238	0.00762
220.C	0.		0-			.386140320E+05	.82614032CE+05	C. 00262	0.01024
230.C	0.	•	0.			.225327534E+06	.225327534E+06	C. 00665	0.01689
240.0	0.		0.			.235251356E+06	.235251356E+06	0-00695	0.02384
250.0	0.		0.			.620075357E+05	.620075357E+05	0.00183	0.02567
2 E G . C	o •		0.			-581132896E+05	.581132896E+05	0.00172	0.02739
270.0	0.		0-			.916802377E+05	-916802377E+05	0.00271	0.03009
300.0	0 -		0.			.585483009E+05	.585483009E+05	0.00173	0.03182
310.C	0.		0.			.654727092E+05	.654727092E+05	0.00193	0.03376
320.0	0.	-	0-			.624482045E+05	.624482045E+05	0.00184	0.03560
330.0	0.	-	0.			.620579332E+05	.620579332E+05	0.00183	0.03743
340.0	0.		0.			.108169042E+06	-108169042E+06	C.00319	0.04063
350.0	0.		0.			-1394344E7E+06	-135434487E+06	0.00412	0-04474
360.C	0.		0.			- 166789288E+06	.166788288E+06	0.00493	0.04957
370.0	0.		0 -			.167369351E+06	-167369351E+06	G-00494	0.05461
3 & O • C	0.		0.			-318928625E+06	-318928625E+06	0-00942	0.06403
350.C	0.		0.			.291456228E+06	.291456228E+06	0.00861	0.07264
400.0	0.		0.			.510303229E+06	•510303229E+06	0.01507	0-08770
410.C	o.		0.			.561176503E+06	.561176503E+06	0-01657	0.10428
420.C	0.		0.			.473633849E+06	.473633849E+06	0.01399	0.11 826
430-0	0• ;		0.			.582227200E+06	.582227200E+0E	0.01719	0.13545
440.0	0.		0-			.892050968E+0E	.892050968E+06	C.02634	0.16180
450.C	0.		0.			.6705E0087E+06	.670580087E+06	0-01930	0.18160
460.0	0.		0-			-663602011E+06	.663602011E+06	0.01960	0.20119
470.0	0.		0.			•553171069E+06	.553171069E+06	0.01633	0.21753
4 6 0 - 0	0.		0.			.703699604E+06	.703688604E+06	0-02078	0.23831
450.0	0.		0-			.877034799E+0€	.877034799E+06	0.02590	0.26420
500.0	0.		0.			•107522405E+07	.107522405E+07	0.03175	0.29595
510.C	0.		ე.			.103116924E+07	.103116924E+07	0.03045	0.32640
520.0	0.		0.			-825013055E+0€	-825013055E+06	0.02436	0.35077
530.0	0.		0.			.157340614E+07	-157340614E+07	0.04645	0.39723
540.0	0.		0.			-117292656E+07	-117292656E+07	0-03464	0.43186
550.0	0.		0-			-974866380E+06	-974866360E+06	0.02679	0.46065
560.0	0.		0.			-12477975CE+07	.124779750E+07	0.03685	0.49750
570.0	0.		0 -			-147160936E+07	-147160936E+07	C.04346	0.54095
5 E O . C	0.		0.			.120426323E+07	-120426323E+07	0.03556	0.57651
590.0	0.		0.			-971985020E+0€	-971985020E+06	0.02870	0.60521
600.0	0.		0.			-12310027 8E+07	-123100278E+07	0.03635	0.64156
610.0	0.		0.			-129496696E+07	·129496596E+07	0.03824	0.67580
620.0	0.		0.			-108575641E+07	-108575641E+07	0.03206	0.71187

Table D-10.--Population estimates by sex and size group for Pacific halibut (cont'd).

						CUMULATIVE
LENGTH (MM)	*** MALES ***	** FEMALES **	** UNSEXED **	*** TOTAL ***	FRCPORTION	PROPURTION
630.0	0 -	0.	-825829317E+06	-825829317E+06	0-02439	0.73625
640.0	0.	0.	-903750053E+0E	.903750053E+06	0-02669	0.76294
650.0	0.	0.	-641145407E+06	-641145407E+06	C.01E93	0.78187
660.0	0.	0.	-549548475E+06	-549548475E+06	0-01623	0.79810
670.0	9 -	0.	-558763852E+0 <i>E</i>	.558763852E+06	0.01650	0.81460
680.0	0.	0.	-575564170E+06	-57556417CE+06	0.01700	0-83159
650.0	0.	0.	-765334629E+0E	.765334629E+06	C-02260	0.35419
700-C	0.	0.	-429302686E+06	.429802686E+06	0.01269	0.86689
710.0	9.	0.	.322662658E+06	-322662658E+0€	0-00953	0.87641
720.0	0.	0.	.342984751E+06	.342984751E+06	C-01013	0.88654
730-C 740-0	0.	0.	.336543765E+06	.336543765E+06	0.00994	0.89648
750.0	0.	0.	-235752500E+06	-235752500E+06	0.00696	0.90344
760.0	0.	0-	-265590738E+06	.266590738E+06	0-00787	0-91131
770.0	0.	0-	-348077759E+0E	-348077759E+06	0.01028	0.92159
760.0	0.	0.	-249843289E+06	-249843289E+06	0.00738	0.92897
750.0	0.	0.	.192857091E+06	-192857091E+06	C-00569	0.93466
	0.	9-	-925027241E+05	-925027241E+05	0.00273	0.93740
0.003	0.	0-	•119522942E+06	.119622942E+06	0.00353	0.94093
810.0	9.	0.	•124636476E+06	-124636476E+06	0.00368	0.94461
0.033	0.	0.	-111562514E+06	-111582514E+06	0-00329	0.94790
830.0	0.	0.	-172200095E+06	-172200095E+06	0-00508	0.95299
640.0	0.	0.	-113071453E+0f	-113071453E+06	0.00334	0.95633
0.033	0.	0 -	.162117018E+06	.162117018E+06	0-00479	0.96111
0.033	ĵ.	0-	-35382978CE+05	-353829780E+05	0-00134	0-96215
870.0	0 -	0.	-482341499E+05	-482341499E+05	0.00142	0.96358
0.093	0.	0.	.792686612E+05	.792686612E+05	0-00234	0.96592
£90.0	0.	9.	-143719761E+06	-143719761E+06	0-00424	0-97017
900.0	9.	0.	-115759551E+0€	•115759551E+0€	0-00342	0.97359
910-0	0.	0-	-167493181E+05	-167493161E+05	0.00049	0.97408
920-0	9.	0.	-124560324E+0E	-124560324E+06	0-00368	0.97775
540.0	0.	9-	-628140516E+05	-628140916E+05	0.00185	0.97961
950-0	0.	0.	.145219499E+06	•145219499E+06	0.00429	0.98390
970.0	0.	0_	-460234685E+05	.460234685E+05	0-00136	0.98526
5 6 0 . 0	0.	0.	-66918308CE+05	-669183060E+05	C-00198	0.98724
1010.0	0.	0	-490243318E+05	.490243318E+05	0-00145	0-98859
1020.0	0.	0.	-356536789E+05	-356536789E+05	C-0C105	0-98574
1 C E O . C	0.	C-	-244903512E+05	-244908512E+05	C-0C072	0-99045
1680.6	0.	0.	.633324 E04E+05	.633824804E+05	0.00187	0.99233
1100-0	0.	0.	•512844445E+05	.512844445E+05	0-00151	0-99385
1110.C	0.	0.	-330455423E+05	-330455423E+05	0-00098	0.99482
1130.0	0.	0.	-164034362E+05	-164034362E+05	0.00048	0-99531
1150-0	<u>0</u> •	0.	323701339E+05	.323701339E+05	0.00096	0.99625
1190.C	3.	0.	-158167697E+05	.158167697E+05	0-0C047	0.99673
1250.C	0.	0_	.304609403E+05	.304609403E+05	0-00090	0-99763

Table D-10 .-- Population estimates by sex and size group for Pacific halibut (cont'd).

LENGTH(MM) 1350.0 1540.0 1760.0	*** MALES *** 0. 0. 0.	** FEMALES ** 0. 0.	** UNSEXED ** .339396311E+05 .306198848E+05 .157120229E+05	*** TOTAL *** .339396311E+05 .306198848E+05 .157120229E+05	FROPORTION	CUMULATIVE PROPURTION 0.99863 0.99554 1.00000
TUTAL	0.	0.	.338648742E+08	.338648742E+08		

APPENDIX E

Age-length Key for Walleye Pollock

Appendix E presents age-length data collected for walleye pollock during the 1984 groundfish survey, in separate age-length keys for males, females and unsexed fish. The "unsexed" key is actually a combined key, including the age-length data taken from males, females and unsexed (usually juvenile) specimens. In determining the population age composition (Appendix F), the male key was applied to the male population, the female key to the female population, and the combined key to the unsexed population, apportioning ages among length categories in the proportions occurring in the keys. When no age samples were available for a given length interval, ages for fish of that length were apportioned by interpolation, over gaps of not more than 5 centimeters.

List of Tables

Table						Page
E-1.	Age-length	kev	for	walleve	pollock	195

i

THIS PAGE INTENTIONALLY LEFT BLANK

MALE KEY

			FREQ-																											
			DENCA	0	1	2	3	4	5	6	7	8	9	10															25 2	26+
•••	*****	••••	****	***	** *	***	* * *	***	***	***	***	•••	***	* * *	•••	• • •	***	• • •	•••	•••	•••	***	***	• • •	***	* * *	***	***	*** 1	* * *
1 CO	1-00	€.00	1	0	1	0	0	0	0	0	0	0	0	a	c	0	0	0	a	С	C	0	0	0	0	a	0	0	c	•
110	1-00	0.00	8	0	8	0	0	0	0	Ö	ō	ō	0	Ŏ	ō	ō	Ğ	ŏ	ā	ō	ā	Ö	ā	Ö	Ö	0	Ö	Ö	0	e G
	1-0C			0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ô	Ö	0	Ō	Ō	ō	ō	ō	ō	Õ	Õ
	1-00		-	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ċ	Č
	1-0¢ 1-17		5 6	0	5 5	0	0	0	0	0	0	0	0	0	C	0	0	0	0	C	0	0	0	0	0	0	0	0	0	C
	1-25		7	ŏ	5	2	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	c
	1-67			ŏ	2		0	ō	Ú	0	0	0	0	ā	0	a	C	0	0	G	C	0	0	0	0	0	0	0	C	C
160	1-57	0.53		ŏ	3	i	ŏ	ō	ō	ŏ	ō	Ö	ŏ	ō	ā	Ö	Č	0	Õ	Õ	Ö	Ö	0	0	0	0	0	0	ů	0
	2-00		9	0	0	9	0	0	0	0	. 0	O	G	Ō	Ğ	ō	. 0 .		ō	. 0	ō	Ö	ŏ	ŏ	Ö	ŏ	Ö	ŏ	Ö	ò
	1.75		8	0	2	6	0	0	0	0	0	0	0	0	0	0	0	0	C	C	C	0	0	0	0	O	0	0	C	0
	2-0C 2-0G	-	10	0	0	10	0	. 0	0	0	0	0	0	0	0	0	0	0	0	C	Q	0	0	0	0	G	0	0	0	e
	2-06		10	0	10	8 8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	2-0C		10	0	Ö	. 10	a	a	a	0	0	0	0	0	0	0	0	0	0	C	C	0	0	0	0	0	0	0	C	C
	2-44			ŏ	Ö	5	4	0	Ö	0	0	0	0	Ö	0	0	0	0	0	C	C	0	0	0	0	0	0	0	C	C
	2-27		11	ŏ	ŏ	é	3	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ŏ	0	Ö	ŏ	. 0		Ğ	Ö	a	0	0	a	0	0	. 0	0
	2-25		8	0	0	6	2	0	0	0	0	0	· C	0	0	0	Ō	Õ	ō	Č	Q	ō	ō	ō	ō	Ŏ	ŏ	Ö	ċ	a
	2.44		9	0	0	5	4	. 0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	Ö	Õ
	2-43 3-13		7	0	0	4	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	C
	3-67		8	0	0	0	7	1	0	0	0	0	0	0	0	0	C	0	C	C	0	0	0	0	0	0	0	0	C	C
	3-66		é	ă	Ö	Ö	4	2	1	1	0	. 0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	G	0,
	3-33		6	ō	, ō	ō	4	ž	Ô	ō	ŏ	ō	ő	·a	. 0	ŏ	ā	ŏ	Ö	c	C	0	0	0	0	0	0	0	. 0	C
	, 4-0C		20	0	0	0	6	10	2	2	. 0	Ō	Q	ā	ā	ō	ō	0	ŏ	č	ō	ō	ŏ	ŏ	ŏ	ŏ	ő	0	. 0	0
	3-65		17	0	0	0	8	7	2	0	0	0	0	0	0	0	C	` 0	0	0	0	0	0	ō	0	Ö	ō	Ō	ō	ō
	4-00 4-40		18	0	0	0	4	10	4	0	0	0	O	0	0	0	C	0	0	0	C	0	0	0	0	0	0	0	C	C
	4-28	-	20 18	. 0	0	. 0	1 2	11 9	7	1	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С
	4.55		22	. 0	Ö	ŏ	. 1	11	6.	7	0	0	0	0	0	0	0	0	0	0	.0	0	.0	-0	0	0	0	0	0	0
	5-25		20	ō	ō	Ğ	2	2	6	9	ĭ	Õ	ă	a	Ô	0	Č	a	0	0	0	0	0	0	0	0	0	0	0	C
	5-05		21	0	0	0	1	5	9	4	2	Õ	ō	ō	ō	ŏ	ò	ŏ	ő	Õ	Č	ŏ	Ö	ŏ	Ö	0	0	0	0	Ċ
	5-34		21	0	0	0	0	5	4	11	1	0	0	0	,0	0	0	0	0	C	Ō	Ō	ō	ō	Ŏ	ō	ŏ	ō	Õ	ō
	5-63 5-61		19	0	0	0	0	1	7	9	2	0	0	0	0	0	C	0	0	C	0	0.	0	0	0	0	0	0	0	ō
	5-75		18 20	0	0	0	0	1	6 5	10	1	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	C
	5.95		20	0	0	0	0	1	0	15 18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	5-85		20	ŏ	ō	ă	Ö	ō	5	13	2	0	0	. 0	Ö	0	0	0	0	a	0	0	0	0	0	0	0	0	c	C
	6-11		19	Ō	Õ	ō	ŏ	Õ	2	13	4	ŏ	ŏ	ŏ	ŏ	ŏ	Ö	Ö	0	Ö	0	0	0	0	0	0	0	0	U	0
	6-32		19	0	0	0	0	1	0	12	4	2	0	0	Ö	Ö	Č	Õ	ă	č	Q	ŏ	Ö	ŏ	ŏ	ŏ	Ö	ă	Č	0
	5-85		-	0	0	0	0	0	4	12	2	0	0	0	C	0	0	0	0	0	0	0	Ö	0	Ö	Ō	ō	ō	Õ	o
	6-21 6-47		19 17	0	0	0	0	0	4	9	5	0	1	0	0	0	0	0	0	C	0	0	0	0	0	0	0	Ò	ā	ů
7.0	0-1/	V4 1 2	17	U	U	0	0	0	. Q	11	4	2	O	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	С	a

Table E-1.--Age-length key for walleye pollock (cont'd).

4466	n & 1	-			÷																									
LEN				1GE	CIN	YE AF	((((-																		
GTH	AGE	CE V.	UENCY	0	1	2	3	4	5	6	7	8	· 9	10	11	12	13	14	15.	1€	17	18	19	20	21	22	23	24	25 :	26+
***	*****	****	****	4 2 4	***		• • •	***	•••	***			***			***	***	• • •	***									•••		•••
530	6.44	1-15	18	.0	. 0		0	6	3	9	2	3	1	g	С	0	0	0	a	c	0	0	a	o	0	a	a	a	a	n
540	7-00	1-12	20	a	0	G	0	0	1	7	5 .	5	2	0	0	0	0	0	0	Ö	Ō	Ō	Ŏ	Ö	Ō	ō	ō	Õ	· ā	ē
550	7-31	0.96	19	- 0	0	0	0	0	0	3	9	4	3	Ō	ō	ō	ă	Õ	ŏ	ō	Ō	ō	ō	ŏ	ō	ŏ	ŏ	ŏ	ñ	ŏ
5 € O	7.56	1 - 46	18	0	0	0	0	0	Č	5	6	2	Ž	3	ō	Č	ā	ā	ă	ā	Č	ō	Ŏ	. 0	ō	. 0	ā	Ď	Ö	Č
570	7-00	1-03	20	0	0	0	0	0	0	7	9	1	3	G	0	0	a	0	ō	Ċ	0	ō	Ó	Ō	Ö	ň	n	ō	Õ	ŏ
	7-44			0	0	0	0	0	Ō	6	4	3	4	1	Ō	ō	Õ	ō	Õ	č	ŏ	ŏ	ō	ŏ	Ö	ő	ň	ă	ď	õ
590	7.53	1.68	19	O	. 0	0	0	0	0	4	10	0	4	ō	ō	ō	1	ŏ	ŏ	Č	Ğ	Õ	ā	ă	Ō	ō	ă	ō	Ğ	č
€ C O	8.55	1.97	17	0	0	Q	0	0	0	1	4	5	4	1	ō	1	ã	1	Ŏ	ā	Č	ō	Õ	Õ	Ö	ā	ō	Õ	Õ	ō
610	8-33	1-40	15	0	0	C	0	0	0	. 0	5	. 4	4	1	Ŏ	ī	Õ	ō	ā	Ö	Õ	ō	Ō	Ŏ	Õ	Ŏ	ŏ	ō	ň	č
620	8-50	1 - 25	18	0	0	0	0	Ö	0	0	5	4	5	3	1	ō	o	Ö	Ō	ō	0	0	Ŏ	Ö	Ô	ō	o	ő	č	č
€ 20	8.82	1.78		Q	0	0	0	0	0	0	2	4	3	0	1	0	ī	ō	ō	č	Č	ň	Ō	ō	Õ	å	ŏ	ŏ	ā	č
	9-27			O	Ō	ō	0	Ö	ō	ō	3	3	5	Ī	ē	2	ō	ŏ	ì	õ	Õ	ŏ	ā	Ŏ	ŏ	ŏ	ā	ő	ŏ	ŏ
€50	8-17	0.94		0	0	0	0	0	0	1	1	5	5	0	ŏ	ō	ŏ	Ŏ	ō	ā	ō	ō	ō	ŏ	Ŏ	ŏ	ŏ	Õ	ŏ	ō
660	8-21	1.93	14	0	0	0	0	0	C	1	6	3	1	1	1	0	ī	ā	ō	C	Q	O	ā	Ŏ	Ō	ŏ	o	ō	Č	Ö
670	9-00	1 - 71	12	0	0	0	0	Ò	0	1	1	2	5	0 -	2	1	C	0	Q.	Ċ	0	Ó	0	0	0	o	Ō	ō	ŏ	č
680	8.67	1.51	6	0	0	0	0	0	0	0	Ž	0	3	0	1	ō	ō	Ō	Ō	Ŏ	Ö	0	ŏ	ŏ	ŏ	ŏ	ō	Ō	ă	õ
€90	9.50	1-69	8	. 0	0	0	0	٥	0	0	1	2	Q	3	1	1	C	0	ō	0	0	0	. 0	0	0	O	0	ō	Č	č
700	11-25	3.30	4	0	0	Ó	Ō	0	0	0	0	ō	2	Ō	ì	ō	Õ	Ō	ō	1	. 0	Õ	Ō	Ō	ō	ŏ	ō	ŏ	· č	ō
710	13.OC	0-00	1		0	O	0	0	0	0	Ó	0	0	0	Ō	0	1	0	ō	Ō	Ö	0	0	0	0	0	0	Ō	ŏ	ŏ
720	10-00	2-00	. 3	0	0	0	0	0	0	. 0	0	1	0	1	0	1	0	0	0	C	0	0	0	. 0	0	0	0	0	C	č
740	14.00	C_00	1	0	O	C	0	0	C	0	0	0	0	0	. 0	0	C	1	C	C	0	0	0	0	0	0	0	0	C	0
770	9-00	C-00	1	0	- 0	0	0	0	0	0	0	0	1	0	-0	0	. 0	. 0	0	0	0	0	0	0	. 0	Ö	0	0	0	Ö
TOTAL	. 5.44	2-58	e 26	a	5 <i>2</i>	9 0	62	82	85	200	104	55	5 &	15	e	7	4	2	1	1	0	. 0	0	0	0	0	0	0	0	0
				-											-	•	-	_	_	-	,	•	•	•	•	_	-	•	-	-

FERALE KEY

'LEN GTH	AV6 AGE	SID. CEY.	FREQ- UENCY			YE AR		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26+
	****	****	****			***																								**
110	1 00	• •				•	_	_		_	_	_	_	_	_	_	_	_	_	_	_	•	_	_	•	_			•	•
	1-00 1-00		6 10	0	6 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1-00		9	ŏ	9	o	ā	Õ	a	Ö	ő	0	C	Ŏ	Ö	ū	Č	ŏ	0	Č	Õ	ŭ	ō	0	Ö	ū	D	ā	Č	o o
	1-00		8	Ŏ	é	ō	ŏ	ā	ŏ	ō	ō	ŏ	Õ	ō	č	ŏ	ă	Ō	ă	à	ŏ	ō	ō	ŏ	ŏ	ŏ	ō	ŏ	ŏ	Õ
150	1.00	0.00	8	0	8	0	Ó	0	0	0	Ó	0	0	0	ō	Ō	Ō	Ō	Õ	Č	Ō	Ö	Ō	Ó	0	Ō	Ō	Ō	Ō	Ö
160	1 - O C	0.00	6	0	6	0	0	0	0	0	0	O	O	0	0	0	C	0	0	G	C	0	0	0	0	0	0	0	C	C
	1-50		6	0	3	3	0	0	0	0	0	0	0	0	C	0	C	0	G	0	Û	0	0	0	0	0	0	0	0	0
	1.67		6	0	2	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	c
	1-83	_	6	0	1	5	0	0	0	0	0	0	0	0	0	0	C	0	0	C	0	0	0	0	0	0	0	0	C	С
	2.00		8	0	0	8	0	0	O	0	0	0	0	0	C	0	0	0	0	C	Q	0	0	0	0	0	0	0	C	C
	2-00		11	0	0	11	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	2-00		11	0	0	11	0	0	0	0	0	0	0	0	. 0	0	C	0	0	Q	0	0	0	0	0	0	0	0	C	C
	2.06 2.17		12	0	Q	12	0	0	0	0	0	0	0	0	, 0	0	Ç	0	0	Ç	q	0	0	0	0	0	0	0	0	0
	2-22		6	0	0	5	1	0	0	0	0	0	0	0	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2.17		9 12	0	0	7 10	2	0	0.	0	0	0	0	0	· 0	0	0	0	0	Q C	0	0	0	0	0	0	0	0	C	0
	2-5¢		6	Ö	Ö	4		0	٥	0	0		0	0	0	_	Ö	0	0		0	0		_	0	0	0	0	0	C
280	2.80	0-15	5	ŏ	Ö	ī	4	0	0	0	Ö	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	C
290	2.33	0.52	6	ŏ	ŏ		2	Ö	Ö	Ö	ő	Õ	0	ā	ā	ă	'n	Ö	a	č	Ċ	0	a	ŏ	Ö	Ğ	ō	Ö	č	č
	3.22		9	ō	ā	ò	7	2	ŏ	ŏ	ō	ŏ	ŏ	Ö	. č	Ö	Õ	ŏ	ŏ	č	ō	ŏ	ō	ŏ	ŏ	Õ	ŏ	õ	õ	Ö
	3-40		5	Ō	Ō	Ō	3	Ž	Ō	Õ	ō	ō	Õ	Õ	0	Ō	Ō	Ŏ	Ō	Č	Ō	Ō	Ō	Ō	Ō	Ō	ō	Ō	Ō	ō
350	3-25	0.71	8	0	0	0	7	Õ	ì	Ŏ	Ō	O	Ō	0	Č	0	C	0	0	O	Ö	0	Ŏ	ō	Ŏ	Ŏ	ŏ	0	C	Č
	3-61		6	0	. 0	1	0	5	0	0	0	0	0	0	0	0	C	0	0	0	0	Ō	0	0	0	. 0	0	0	C	0
	3-64		11	0	0	0	6	4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	4-00		14	0	0	0	4	8	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	3 - 28		16	0	C	0	5	9	1	1	0	0	0	0	C	0	c	0	C	Q	Ç	0	0	0	0	0	0	0	0	0
	4-35		18	0	0	0	1	11	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Q
	4-62		21	0	0	0	3	6	8	4	0	0	0	0	0	0	0	0	0	C	0	. 0	0	0	0	0	0	0	0	0
	4-25		21	0	0	0	5	9	3	4	0	0	0	0	0	0	0	0	0	C	u	0	0	0	0	. 0	0	0	C	C
	4-90		20 20	0	0	0	0	8 7	10	2 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	C O
	5-26		19	a	ő	Ö	0	6	4	. 7	2	ā	0	a	0	0	0	Ö	0	Č	ā	ā	õ	Ö	0	o	0	0	G	Č
	5-45		20	ŏ	0	ă	0	3	7	8	2	a	ă	0	G	Ö	ä	Ö		C	ñ	Ö	Ö	0	Ö	ā	0	0	ō	G
	5-38		21	ŏ	Ö	ŏ	Ö	. 2	ģ	10	Ō	Ö	Õ	ō	a	0	ō			Õ	ō	ŏ	Ö	ő	. 0	0	ņ	ő	Õ	Č.
	5-90		21	ŏ	Ö	ā	ŏ	ō	á	15	2	ă	Ö	Ö	ā	Ö	ō	ā	0	ā	ō	ŏ	ă	ŏ	ŏ	Ö	ő	ŏ	č	č
	5-94		16	ō	Ŏ	ō	Ŏ	ĭ	ž	11	1	ĭ	ă	ā	ō	ā	ō	ŏ	-	ŏ	Ö	ŏ	ō	ō	Ō	Ō	ō	Ō	č	ō
470	5-83	0 - 62	18	0	Ō	C	Ö	ī	2	14	1	ō	Õ	ō	ō	Õ	ō	0	_	Ö	Ō	0	0	0	0	0	Ō	0	0	O
4 60	5-85	0 - 46	19	0	0	Ö	Ö	Ō	3	15	1	Ö	ō	ō	ā	Ō	Ö	Ŏ	Ö	C	0	0	0	0	0	0	0	0	0	C
	6-04		23	0	0	0	0	0	3	17	2	1	0	C	0	0	Q	0	0	C	0	0	0	0	0	0	0	0	0	0
	6-25		20	0	0	0	0	0	3	11	5	0	1	0	C	0	0	0	0	0	0	0	0	0	0	0	0	Ò	0	C
	6-25		20	0	0	0	0	Q	1	13	6	0	O	0	0	0	0	0	_	C	0	0	0	0	0	0	0	0	0	0
	6-14		22	0	0	0	0	C	0	19	3	0	0	0	-	C	C			C	0	0	0	0	0	0	0	0	C	C
530	6-37	0.96	19	0	0	C	0	0	3	9	4	3	0	0	G	0	a	0	0	C	0	0	0	0	0	0	0	0	0	0

Table E-1. -- Age-length key for walleye pollock (cont'd).

۳	•	41	•	
•	•			 Ŧ

LEN	A U C	***	E056.	165		WE																								
			FREQ-	JUE	CTM	TE AK	21		_	_	_	_	_								_									
6 TH			UE NC Y																			18								
***	****		****	* * *	***		* * *			***	• • •	***	•••	• • •			***		•••		* * *			•••	***	***	***	***		
			_																											
		1 - 17		0	0	O	0	0	1	13	6	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0 - 75		0	0	0	0	0	0	8	7	3	0	0	0	0	0	0	0	G	0	0	0	0	0	0	0	0	0	0
	7.55		20	0	0	0	. 0	0	2	7	3	2	2	2	1	O	1	0	O	C	C	0	0	0	0	0	0	0	0	0
570	7.10	1-12	20	0	0	0	0	0	1	4	10	3	1	1	c	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0
580	7.50	1 - 79	22	0	0	0	0	0	0	7	6	5	3	0	0	0	0	1	0	0	0	0	0	Ō	0	0	0	0	Ó	Ó
590	8.05	1.99	19	0	0	0	- 0	0	1	1	8	3	2	3	0	0	0	1	0	C	0	0	0	0	0	. 0	0	0	c	С.
€CO	7 - 81	1.40	21	0	0	0	0	0	. 0	2	9	5	-3	1	Q	1	ō	ō	ō	ō	C	Ō	0	Ō	0	. 0	Ô	0	ñ	Õ
610	8-45	1-54	20	0	0	. 0	0	0	0	1	5	6	3	3	1	1	0	0	0	۵	0	0	0	0	0	0	0	Ō	ō	Ŏ
620	8-05	1.85	20	O	Ō	Ō	ŏ	ŏ	ō	Ž	7	7	1	ī	- 1	ō	Ö	1	ō	ō	Ö	ŏ	ŏ	ŏ	ō	ŏ	ō	ō	č	č
€ 20	8.67	3.08	21	0	O	0	0	Q	Ō	1	7	5	2	1	3	1	ō	1	Ŏ	ā	ō	0	0	0	Ō	Ŏ	Õ	ō	ō	ō
640	6-95	1.76	20	. 0	0	٥	0	0	ō	0	3	8	3	2	3	Õ	ō	ī	ō	ā	ò	ō	ō	ŏ	ō	Ŏ.	Õ	ō	ŏ	ñ
650	8.75	2.12	19	0	0	ō	ō	ō	ā	Ō	6	2	4	1	ĩ	2	Õ	ĩ	ō	Č	ō	ā	ō	ō	Ō	0	Õ	á	ō	õ
660	9.53	2.58	17	Ŏ	. 0	ō	Ŏ	ō	ã	ō	4	4	i	- 4	ī	ī	Õ	ī	ō	1	Č	ŏ	ŏ	ŏ	ō	ā	ō	ő	č	õ
670	9-14	1.75	14	0	0	a	0	0	0	0	2	5	2	1	· 2	2	. 0	ñ	Ô	Č	Õ	ŏ	ō	0	Ō	ō	ŏ	ō	0	Ō
		1.43		Ŏ	Ŏ	ō	ō	Õ	ō	. 0	5	6	- L	2	ī	ĩ	ō	ŏ	Õ	ř	Õ	ñ	Õ	Õ	ň	ŏ	ň	ā	Ô	ň
	9-13			ō	ō	ā	Õ	Õ	ŗ	ž	ó	2	1	Ī	7	ô	č	ñ	ō	č	Õ	Õ	Õ	Õ	ň	n	ñ	0	ŗ	ñ
	9-61			õ	ŏ		ŏ	ñ	ā	Õ	,	5	7	•		ň	ĭ	ņ	,	ň	č	ō	ō	0	ŏ	ň	Ö	ň	ŏ	Č
	9.08	1-24		ŏ	ŏ	ň	. 0	ŏ	ŏ	ŏ	1	- 3	- 7	;	2	Ŏ	ō	ň	ñ	ŏ	ັດ	ŏ	Õ	Ö	ő	ň	ŏ	0	n	0
	10.25			ŏ	ŏ	. 0	Õ	ō	ō	ŏ	i	- ī	ì	ò	2	,	Č	ñ	1	ĭ	ñ	ŏ	ŏ	ň	ñ	ñ	ŏ	ด	ř	ř
	10.23			ō	ŏ	. 0	ō	ō	ŏ	ŏ	ā	, ,	3	ň	7	- 1	ĭ	ň	â	Ĉ	ŏ	ō	. 0	ŏ	ñ	ŏ	ñ	ň	Č	'n
	10-60			ō	ŏ	ă	ŏ	ŏ	ō	ŏ	ň	ń	- 1	ĭ	2		ō	ň	. 0	õ	õ	ŏ	. 0	Õ	٥	ŏ		0		0
	10.50		_	ŏ	ō	· ā	ő	Õ	Õ	Õ	ŏ	ő	â	·	ī	â	ñ	ň	ă		ň	ñ	Ö	ă	ñ	n	ă	ñ	č	Č
	11-75	3.06		ō	ā	ō	ā	ō	ŏ	. 0	ō	ō	ĭ	î	ċ	0	•	•	ā	č	ő	·	o	Õ	ŏ	n	n	0		^
	10-25			ő	Ö	o.	ō	0	a	Ö	ŏ	ĭ	å	•	•	•	i		Ö		ŏ	ō	0	ŏ	Ö		0	ŏ	0	0
	11-00		•	ŏ	ŏ	ŏ	ŏ	Õ	Õ	ŏ	ŏ	. 0	ň	ñ	i	ā	ň	ň	ŏ	ŏ	ō	ő	ŏ	ő	0	ō	o	~	ř	Č
	10.00	1-41	_	ő	ā	Õ	. 0	ň	Ô	Ö	ŏ	. 0	·	. 0	•	ŏ	C	0	'n	Č	Č	ō	a	ō	Ö	,	õ	,		Č
	14.00		_	ŏ	õ	ñ	. 0	ă	ň	Ď	ň	ă	á	ŏ	'n	Ô	ŏ	٠	ň	ř	à	ñ	ñ	Ô	Õ	õ	n	0	ň	n
	13.00		•	ň	Õ	Ö	Õ	ñ	0	ñ	Õ	0	ŏ	ñ	0	0	•	7	o	0	0	Õ	Ô	o.	Ô	0	n	0	0	0
															, 0														- V	
								•						-																
TOTAL	5-99	2.90	943	0	53	86	58	84	76	220	124	86	53	36	32	15	5	9	3	2	0	1	0	0	0	0	0	0	0	0

GTH	AGE	DE V.	FREO- UENCY			YE AR		4	5	6	7	8	9	10	11	12	13	14	15	16	17	1.8	19	20	21	22	2 1	24	25	764
•••	****	****	****		•••	***	***	***	***	***	***		***	***		4.4.4	***	***		•••		•••		***		•••	***	444		***
100	1.00	0.00	6	0	6	a	0	0	0	0	0	0	0	a	Q	0	0	0	0	a	0	0	0	oʻ	0	o			_	_
	1-0C			0	20	Ō	ŏ	ŏ	ŏ	ŏ	Ö	Ö	ŏ	ŏ	Č	ŏ	č	Ö	Ö	č	Ö	ő	Ö	Ö	Ö	a	0	0	C	C
	1.00 1.00		26	0	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1-00		24 15	0	24 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
150	1-12	0 - 33	17	ō	15	ž	Ö	Ô	Ö	0	0	0	a	0	0	0	0	0	0		C	0	0	0	0	0	0	0	C	C
	1-25		16	0	12	4	0	Ō	Ö	ō	ō	· ŏ	ă	ō	ā	ŏ	Č	ŏ	Õ	ŏ	ŏ	ŏ	ŏ	ŏ	ő	ā	ŏ	Ö	Ö	ū
180	1-67 1-67	0-49	15	0	5	10	0	0	0	0	0	0	` O	C	C	0	C	0	0	0	0	0	0	0	0	. 0	0	0	Ċ	C
190	1-94	0-49	15 17	0	5 1	10 16	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0
200	1-66	0.34	16	ā	2	14	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
210	2-00	0-00	21	0	0	21	Ŏ	ō	ŏ	ŏ	ő	ő	ă	Ö	Ö	Ö	č	ŏ	Ö	Č	Č	ŏ	Ö	Ö	Ö	0	0	0	C	C
	2-00 2-00		21	0	1	19	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	Ö	č	ō
	2-06		20 16	0	0	20 15	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	. 0	0	a	0	0	C	C
250	2.33	0 - 49	18	Ö	0	12	6	0	a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
260	2.22	0 - 42	23	Ō	ō	18	5	ŏ	ŏ	Ö	ŏ	ő	ā	ŏ	Ö	0	Ö	Ö	0	ă	Ö	ŏ	0	Ö	0	0	0	0	0	0
2/0	2-36 2-57	0.50	16	0	C	10	6	0	0	0	0	0	G	0	C	0	Ö	Ō	O	a	Q	Ō	ō	ā	ŏ	ō	ŏ	ŏ	Ğ	ŏ
290	2-38	0.51	14 13	0	. 0	6 8	8 5	0	0	0	0	0	0	0	0	0	0	0	0	. [0	0	0	0	0	0	0	0	C	C
300	3.1€	0.39	17	Ö	. 0	ő	14	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 C	0
	3-57		14	0	Č	Ō	-8	5	ŏ	ĭ	Ö	ŏ	ŏ	ŏ	Ö	Ö	Č	Ö	ä	č	ŏ	ŏ	ŏ	. 0	Ö	a	0	0	0	0
320	3-56 3-50	0.96	16	0	0	0	11	2	2	1	0	0	0	0	0	0	0	0	0	Q	0	. 0	0	Ō	0	ō	· 0	Ö	Ö	Õ
330	3-54	0.67	12 31	0	0	1	12	7 14	0	0	0	0	0	0	0	0	0	0	0	Q	G	0	0	0	0	0	0	0	C	C
350	3-81	0.83	31	0	Ö	a	12	15	2	3 2	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
360	3-94	0-74	34	0	Ö	Ö	9	19	5	1	ŏ	ő	ā	Ö	ŏ	ŏ	ŏ	ŏ	Ö	ŏ	ŏ	ŏ	Ö	ŏ	Ö	0	0	0	0	C C
370	4-35	C - 72	38	0	0	C	. 2	22	11	3	0	0	a	0	0	0	0	0	0	Q	C	0	0	0	0	. 0	ō	Ō	ō	Ċ
350	4-44	0-96	39 43	0	0	0	5 6	15 20	15 9	4 8	0	0	0	0	C	0	0	0	0	Q	0	0	0	0	0	0	0	0	0	C
400	4-98	0.92	40	Ö	ŏ	Ö	_		16	11	1	0	0	0	0	0	0	0	0	C	0 C	0	0	0	0	0	0	0	0	0
410	4 - 98	1.08	41	0	0	C	3		12	11	3	Õ	ă	Ö	ā	ŏ	ō	ŏ	Ö	ċ	ŏ	ō	Ö	ő	ő	ŏ	Ö	Ö	ŏ	a
420	5.33 5.54	0.97	40	0	0	0	0	11	8	18	3	0	0.	0	0	0	0	0	0	C	0	0	0	0	0	Ō	0	0	O	ā
440	5-45	0-68	39 39	0	0	0	0	4	14 15	17 20	4	0	0	0	0	0	c	0	0	C	C	0	0	0	0	0	0	0	C	0
450	5-83	0.50	41	ŏ	ŏ	ŏ	Ö	0	1 3	30	1 2	0	0	0	C	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0
460	5.94	0 - 67	36	0	0	0	ō	2	2	29	2	1	ŏ	ŏ	ō	ō	Ö	Ö	Ö	ā	ŏ	ō	Ö	ŏ	ō	ŏ	ő	Ö	č	Č
	5.84 6.00		38	0	0	0	0	1	7	27	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0
	6-17		38 42	0	0	C	0	0	5 3	28 29	5 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O
500	6.08	0.78	38	Õ	ō	ŏ	Ö	ō	7	23	7	0	1	0	Č	0	O	0	0	Č	0	0	0	0	0	0	0	0	C O	C
510	6-23	0.78	39	0	0	0	0	ō	5		11	Ō	1	ā	Č	Ö	ŏ	Ö	ō	ō	ŏ	ŏ	ō	ő	ő	ŏ	ő	Ö	Ö	ŏ
250	6-28	0.56	39	0	0	0	0	0	0	30	7	2	0	0	0	0	0	0	0	G	O	0	0	0	0	Ó	0	0	Ó	ō

Table E-1.--Age-length key for walleye pollock (cont'd).

		_		
IIN S	FYF	ח	ĸF	¥

L				FREQ-																											•
Œ.	Н	AGE	CE A.	UENCY	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	16	19	20	21	22	23	24	25	264
• 1	* *	***		****	***	***		***	•••		•••	***		** *,				•••		***	•••		***	•••	4 4 4			•••		***	
51	0 1	6-41	1.04	37	0	0	0	0	0	6	18	6	6	1	0		o	· C	0	a	O	O	0	a	a	o		0	0	_	
			1-16	41	ō	O	ō	Ö	Ö	2	20	11	5	2	ā	1	Ö	ă	o	Ô	•	۵	0	0	0	. 0	a	•	0	C	
			C-91	37	ŏ	ō	ŏ	ŏ	ŏ	Ò	11	16	7	3	ŏ	ñ	Ö	ŏ	. 0	Ô		ŏ	Ö	٥	0	. 0	0	0	Ü	0	,
			1.84	38	ŏ	ŏ	ō	ŏ	ŏ	2	12	9	i	4	Š	,	ñ	ĭ	۵	Ö	n	0	Ô	7	0	Ô	V	0	0	0	•
57	0 8	7-05	1-06	40	ō	ā	ā	ō	ŏ	1	11	19	i	ì	í	ċ	0	â	Ô	ő	n	Č	Ô	a	Ō	0	0	0	Ň		
56	0 2	7-48	1 - 58	40	ō	ō	ā	Ŏ	ā	ō	13	īó	Ř	7	î	õ	ñ	ň	ĭ	ň	ň	ň	ŏ	ŏ	Ö	0	ŏ	. 0	Α.		
55	0 2	7.79	1-83	38	Ó	. 0	ō	Õ	ō	i	-5	18	3	6	3	ō	Õ	1	î	ă	n	a	ā	Ô	Ô	ŏ	ŏ	. 0	ŏ	Č	
6 (0 1	8-16	1.70	38	0	ā	a	Ò	ō	Ğ	3	13	10	7	ž	č	2	Ē	ī	ō	č	ŗ	0	ő	ŏ	Ö	· n	9	ň	. C	
61	0 (8-40	1-46	35	G	ō	O	ò	Õ	ō	1	10	10	7		ì	2	n	ō	ŏ	ō	õ	0	Ŏ	0	Ö	Ö	0	Ô	Ô	- 7
€ 2	0 8	8.26	1.59	38	0	Ö	Ö	Ö	Ō	Ō	2	12	11	6	4	2	ō	ŏ	1	ñ	Č	ő	ŏ	Õ	Ö	Ö	ñ	n	Ö	Ö	
63	0 1	8.72	1.95	32	0	0	Ó	Ō	ō	ā	1	9	9	5	1	ī	ĭ	ĭ	î	ŏ	č	ă	ă	ā	ă	Ô	ñ	ŏ	0	Ô	` `
€ 4	0 9	9-05	1 - 95	35	0	0	0	Ō	0	ā	. 0	6	11	ē	3	7	Ž	ñ	ī	ĵ	ř	ā	ň	ŏ	ŏ	ő	ň	ň	ň	ň	
65	0 8	8-55	1.77	31	0	0	ō	0	0	Ō	1	9	7	9	1	ī	2	õ	ī	ō	ā	ñ	ň	ñ	Õ	ő	ň	Ô	ő	ň	,
66	0 8	8.94	2.37	31	0	. 0	0	0	0	0	1	10	7	2	5	2	ī	ĭ	ī	ā	ī	ก	Õ	ő	ŏ	ő	Ö	ñ	ñ	č	ì
€7	0 9	9-08	1 - 70	26	0	0	0	0	0	Ô	1	3	7	7	1	4	3	č	ō	ō	ē	Ğ	ŏ	ŏ	ă	ō	ñ	Ö	Ď	Ď	
68	0 8	8-56	1-42	25	0	0	0	0	0	0	0	7	6	7	2	2	1	ō	0	Ō	ō	Õ	ō	Ō	ō	0	Ö	Ö	ő	. 0	ï
69	0 9	9.2€	1-60	23	0	0	Ø	0	O	0	2	1	4	4	7	4	1	0	0	ā	Ŏ	ō	ō	ō	ŏ	ő	ŏ	Õ	ň	ř	ì
70	0 9	9.95	2 - 72	20	0	0	0	0	0	0	0	2	5	6	1	2	ō	1	0	2	ĭ	Õ	Ŏ	ō	ō	ō	Ō.	. 0.	ŏ	Õ	ì
		9-38	1-61	13	0	0	0	0	0	0 -	0	1	3	4	2	Z	0	ì	0	. 0	C	Ō	ō	ō	Ō	Ö	Õ	ŏ	ō	ō	ì
7 2	0 10	0-20	2 - 65	15	0	0	0 -	. 0	0	0	0	1	4	3	1	2	2	0	0	1	1	0	Ô	0	0	0	Ō	ď	ā	ă	
	_		1-79	13	0	0	a	. 0	0	0	0	0	3	3	0	3	3	1	0	C	C	0	0	0	0	0	0	0	0	C	(
			1-72	6.	0	0	0	0	0	0	0	0	0	1	1	2	1	0	1	0	0	0	0	0	0	0	0	0	0	Ö	í
			0.71	2	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		_	3-06	8	0	0	0	0	0	O	0	0	0	1	4	C	0	1	1	0	0	C	1	0	0	0	0	0	0	0	Ì
			1-58	- 5	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	C	0	-0	0	0	0	0	0	0	0	(
			0 - 00	1	0	0	0	0	0	0	0	. 0	0	0	0	1	0	0	0	0	· C	0	0	0	0	0	0	0	0	O	(
			1 - 41	2	0	0	0	0	0	0	0	0	0	1	Ö	1	0	O	0	0	C	G	G	0	0	0	0	0	0	C	(
		4-00		1	0	0	0	0	0	0	0	0	0	G	0	G	0	- Q	1	0	C	G	0	0	0	0	0	0	0	0	(
8 3	0 13	3-00	0-00	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	(

TCTAL 5-64 2-81 1806 0 132 186 120 166 161 420 228 141 1F1 51 4C 22 9 11 4 3 0 1 0 0 0 0 0 0

APPENDIX F

Estimated Age Composition for Walleye Pollock

Appendix F presents population estimates for the on-bottom

portion of the eastern Bering Sea walleye pollock population, by

age class for the total survey area, along with mean length for

each age class.

List of Tables

Table		Page
F-1.	Estimated age composition and mean length at age of	
	walleve pollock	203

THIS PAGE INTENTIONALLY LEFT BLANK

Table F-1. --Estimated age composition and mean length at age of walleye pollock.

ALL STRATA CONBINED

SPECIES 21740 THERAGRA CHILCOGRAMMA WALLEYE POLIOCK

HALES, FEMALES, AND UNSEXED

			CUMULATIVE	CUMULATIVE	FEAN	STD. CEV.
AGE CLASS	NUMBE R	FROPORTICK	NUKBER	PRCPORTICK	LENGTH	OF LENGTH
********	*********	********	*********	******	*****	*****
EELOW MINIMUM						
- KEY LENGTH	1,871,133	0.0002	1-871-133	0-0002	89.28	4-06
1	359,797,949	0.0474	361,669,981	0.0476	134-25	21-39
1 2	241,013,875	0.0317	602,682,956	0.0794	220-12	40-49
	402,508,575	0.0530	1,005,191,531	0.1324	350.20	40-29
4	1-142-425-283	0.1504	2-147-620-914	0.2828	387-19	31-76
4 5 6	1,390,565,653	0.1831	3,538,190,467	0-4659	427-05	42-31
	3,197,952,275	0.4211	6,736,142,742	0.6870	463-88	39.72
7	609,474,147	0.0803	7,345,616,909	0-5673	496-57	54-60
. • 8	134,204,365	0.0177	7,479,821,254	0-9850	548-16	62-26
9	62-295-002	0.0082	7-542-120-256	0.5932	580.95	62.99
1 0	21,986,114	0.0029	7,564,106,370	0.9961	611-29	53.23
11	14,710,752	0.0019	7,578,817,122	0-5980	627-47	68-79
± 12	5,79(,431	0.0008	7.584.607.553	0-9988	649-72	44-15
13	3,416,682	0.0005	7,588,026,234	0-5992	600.55	58.43
* 14	4,025,435	0.0C05	7,592,051,669	0-5957	620-88	46-11
15	926,849	0.0001	7,592,978,518	0.9959	687-23	27-70
16	914,608	0_0001	7,593,893,126	1-0000	687.99	21-48
1 &	72,779	0.0000	7,593,965,905	1-0000	760-00	C-00
ABGVE MAXINUM						
KEY LENGTH	25,568	0.0000	7,593,991,473	1-0000	840.00	0.00
TOTAL	7,593,991,473	1.0000	7,593,991,473	1-0000	422.29	9 (55

^{*}Includes ages determined by interpolation.